toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brook, G.A.; Marais, E.; Srivastava, P.; Jordan, T. url  openurl
  Title Timing of lake-level changes in Etosha Pan, Namibia, since the middle Holocene from OSL ages of relict shorelines in the Okondeka region Type Journal Article
  Year 2007 Publication (up) Quaternary International Abbreviated Journal  
  Volume 175 Issue 1 Pages 29-40  
  Keywords  
  Abstract In 2003 examination of aerial photographs revealed a series of previously unknown relict shorelines on the arcuate ridge, possibly a clay lunette dune, that marks the western boundary of Etosha Pan in Namibia. The shorelines are 120–600m wide and the most prominent extend for tens of km around the lunette dune. The shorelines were examined on the ground in 2004 and an attempt was made to date the three lowest levels at ca. 5, 2.5 and 1m above the present pan surface. The OSL ages obtained indicate higher and more prolonged lake conditions than today at ca. 6.4, 4.0 and 2.1ka with the youngest shoreline sediments resting on an ancient pan surface dating to ca. 13ka. The evidence indicates dry conditions in the pan at ca. 13ka, wetter conditions and higher lake levels in the middle Holocene followed by a decline in lake levels to the present. Periods of inundation were of sufficient duration to produce shorelines at the southwestern end of the pan due to the prevailing northeasterly winds that would have maximized wave action along this section of the pan margin. The Etosha findings, together with other regional paleoclimate data, suggest four periods of increased wetness in SW Africa during the Holocene at 7–5, 4.5–3.5, 2.5–1.7 and ca. 1.0ka. There is widespread evidence for the oldest of these periods suggesting that it was a prominent and widespread interval of wetness. Prior to ca. 8.0ka the climate may have been drier than today.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ brook_timing_2007 Serial 97  
Permanent link to this record
 

 
Author Stone, A. url  openurl
  Title Recharge investigations above the Stampriet Aquifer in semi-arid Namibia using geochemical methods and environmental tracers; sand, salt and water Type Journal Article
  Year 2012 Publication (up) Quaternary International Abbreviated Journal  
  Volume 279-280 Issue Pages 470-471  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ stone_recharge_2012 Serial 108  
Permanent link to this record
 

 
Author Brook, G.A.; Railsback, L.B.; Marais, E. url  openurl
  Title Reassessment of carbonate ages by dating both carbonate and organic material from an Etosha Pan (Namibia) stromatolite: Evidence of humid phases during the last 20ka Type Journal Article
  Year 2011 Publication (up) Quaternary International Abbreviated Journal  
  Volume 229 Issue 1 Pages 24-37  
  Keywords  
  Abstract Previous research on lacustrine stromatolites from Etosha Pan in Namibia obtained ages on carbonate close to or beyond the limits of radiocarbon dating. These ages suggested that the basin was likely not subject to extensive flooding during the last ca. 40ka. This study shows that AMS radiocarbon ages for the carbonate of a stromatolite from Poacher’s Point are 15–21ka older than ages for organic material in the stromatolite structure. Calibrated ages range from 30 to 40ka for carbonate and 3–19ka for the organic residue. The new ages, together with petrographic and isotopic data for the stromatolite, have provided important new information on past flooding of Etosha Pan including evidence of prolonged lacustrine conditions during the Holocene Climatic Optimum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ brook_reassessment_2011 Serial 110  
Permanent link to this record
 

 
Author Ammar, F.H.; Deschamps, P.; Chkir, N.; Zouari, K.; Agoune, A.; Hamelin, B. url  openurl
  Title Uranium isotopes as tracers of groundwater evolution in the Complexe Terminal aquifer of southern Tunisia Type Journal Article
  Year 2020 Publication (up) Quaternary International Abbreviated Journal  
  Volume 547 Issue Pages 33-49  
  Keywords CT southern Tunisia, Holocene, Mixing, Radicarbon, Uranium isotopes, Water-rock interaction  
  Abstract The Complexe Terminal (CT) multi-layer aquifer is formed by Neogene/Paleogene sand deposits, Upper Senonian (Campanian-Maastrichtian limestones) and Turonian carbonates. The chemical composition and isotopes of carbon and uranium were investigated in groundwater sampled from the main hydrogeological units of the (CT) aquifer in southern Tunisia. We paid special attention to the variability of uranium contents and isotopes ratio (234U/238U) to provide a better understanding of the evolution of the groundwater system. Uranium concentrations range from 1.5 to 19.5 ppb, typical of oxic or mildly reducing conditions in groundwaters. The lowest concentrations are found southeast of the study area, where active recharge is supposed to take place. When looking at the isotope composition, it appears that all the samples, including those from carbonate levels, are in radioactive disequilibrium with significant 234U excess. A clear-cut distinction is observed between Turonian and Senonian carbonate aquifers on the one hand, with 234U/238U activity ratios between 1.1 and 1.8, and the sandy aquifer on the other hand, showing higher ratios from 1.8 to 3.2. The distribution of uranium in this complex aquifer system seems to be in agreement with the lithological variability and are ultimately a function of a number of physical and chemical factors including the uranium content of the hosting geological formation, water-rock interaction and mixing between waters having different isotopic signatures. Significant relationships also appear when comparing the uranium distribution with the major ions composition. It is noticeable that uranium is better correlated with sulfate, calcium and magnesium than with other major ions as chloride or bicarbonate. The 14C activities and δ13C values of DIC cover a wide range of values, from 1.1 pmc to 30.2 pmc and from −3.6‰ to −10.7‰, respectively. 14C model ages estimated by the Fontes and Garnier model are all younger than 22 Ka and indicate that the recharge of CT groundwater occurred mainly during the end of the last Glacial and throughout the Holocene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ammar_uranium_2020 Serial 119  
Permanent link to this record
 

 
Author Gasse, F. url  openurl
  Title Hydrological changes in the African tropics since the Last Glacial Maximum Type Journal Article
  Year 2000 Publication (up) Quaternary Science Reviews Abbreviated Journal  
  Volume 19 Issue 1 Pages 189-211  
  Keywords  
  Abstract Paleohydrological data from the African tropics and subtropics, including lake, groundwater and speleothem records, are reviewed to show how environments and climates from both hemispheres are inter-related. Although orbitally induced changes in the monsoon strength account for a large part of long-term climatic changes in tropical Africa, the Late Pleistocene–Holocene hydrological fluctuations rather appear to have been a series of abrupt events that reflect complex interactions between orbital forcing, atmosphere, ocean and land surface conditions. During the Last Glacial Maximum (23–18ka BP), most records indicate that generally dry conditions have prevailed in both hemispheres, associated with lower tropical land- and sea-surface temperatures. This agrees with simulations using coupled ocean–atmosphere models, which predict cooling and reduced summer precipitation in tropical Africa; the global hydrological cycle was weaker than today when the extent of large polar ice-sheets and sea-ice was a prominent forcing factor of the Earth’s climate. Glacial-interglacial climatic changes started early: a first wetting/warming phase at ca. 17–16ka BP took place during a period of rapid temperature increase in Antarctica. Next, two drastic arid-humid transitions in equatorial and northern Africa occurred around 15–14.5ka BP and 11.5–11ka BP. Both are thought to match the major Greenland warming events, in concert with the switching of the oceanic thermohaline circulation to modern mode. However, part of the climatic signal after 15 ka BP also seems related to the Antarctica climate. During the Holocene, Africa has also experienced rapid hydrological fluctuations of dramatic magnitude compared to the climatic changes at high latitudes. In particular, major dry spells occurred around 8.4–8ka and 4.2–4ka BP in the northern monsoon domain. Comparison with other parts of the world indicates that these events have a worldwide distribution but different regional expressions. In the absence of large polar ice sheets, changes in the continental hydrological cycles in the tropics may have a significant impact on the global climate system. Climate information gathered here allows to identify geographical and methodological gaps, and raise some scientific questions that remain to be solved to better understand how the tropics respond to changes in major climate-forcing factors, and how they influence climate globally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-3791 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gasse_hydrological_2000 Serial 96  
Permanent link to this record
 

 
Author Röttcher, K. url  doi
isbn  openurl
  Title Type Book Chapter
  Year 2018 Publication (up) Risikomanagement und Nachhaltigkeit in der Wasserwirtschaft: Erfolgreiche Navigation durch die Komplexität und Dynamik des Risikos Abbreviated Journal  
  Volume Issue Pages 165-174  
  Keywords  
  Abstract Im vorliegenden Beitrag werden beispielhaft unterschiedliche Ansätze des Risikomanagements und das Verständnis von Nachhaltigkeit in der Wasserwirtschaft dargelegt. Die Darstellung richtet sich insbesondere an Leser aus anderen Fachdisziplinen, wie das Rechts- und Finanzwesen, den Fahrzeug- und Maschinenbau oder auch die sozialen Berufe. Die Zusammenhänge werden überblicksartig mit einzelnen konkreten Beispielen dargestellt mit dem Fokus auf die grundsätzlichen Denk- und Vorgehensweisen.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Fachmedien Wiesbaden Place of Publication Wiesbaden Editor Michalke, A.; Rambke, M.; Zeranski, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-658-19684-4 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Röttcher2018 Serial 90  
Permanent link to this record
 

 
Author Pisa, P.F.; Nehren, U.; Sebesvari, Z.; Rai, S.; Wong, I. url  isbn
openurl 
  Title Chapter 17 – Nature-based solutions to reduce risks and build resilience in mountain regions Type Book Chapter
  Year 2024 Publication (up) Safeguarding Mountain Social-Ecological Systems Abbreviated Journal  
  Volume Issue Pages 115-126  
  Keywords Nature-based solutions, mountains, climate change adaptation, disaster risk reduction, ecosystem services, SDGs  
  Abstract Nature-based solutions (NbS) are increasingly recognized as effective environmental-management measures to address societal challenges such as climate change, water and food security, and disaster risk reduction, thus contributing to human well-being and protecting biodiversity. In addition to being particularly susceptible to these challenges, mountain areas are prone to multihazard conditions, due to their steep topography and particular climatic conditions. NbS can contribute greatly to the sustainable development of mountain ecosystems. This chapter presents examples of NbS in mountain areas around the globe that demonstrate how this approach contributes to achieving sustainable development.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Schneiderbauer, S.; Pisa, P.F.; Shroder, J.F.; Szarzynski, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-822095-5 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Fontanellapisa2024115 Serial 263  
Permanent link to this record
 

 
Author Post, V.E.A.; Vassolo, S.I.; Tiberghien, C.; Baranyikwa, D.; Miburo, D. url  openurl
  Title Weathering and evaporation controls on dissolved uranium concentrations in groundwater – A case study from northern Burundi Type Journal Article
  Year 2017 Publication (up) Science of The Total Environment Abbreviated Journal  
  Volume 607-608 Issue Pages 281-293  
  Keywords Geochemical modelling, Hydrochemistry, Lake Tshohoha South, Public health, Radionuclides, Water supply  
  Abstract The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ post_weathering_2017 Serial 132  
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L. url  openurl
  Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
  Year 2023 Publication (up) Science of The Total Environment Abbreviated Journal  
  Volume 861 Issue Pages 160636  
  Keywords ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium  
  Abstract Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138  
Permanent link to this record
 

 
Author Liesch, T.; Hinrichsen, S.; Goldscheider, N. url  openurl
  Title Uranium in groundwater — Fertilizers versus geogenic sources Type Journal Article
  Year 2015 Publication (up) Science of The Total Environment Abbreviated Journal  
  Volume 536 Issue Pages 981-995  
  Keywords Drinking water, Fertilizer, Geogenic background, Groundwater, Uranium  
  Abstract Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liesch_uranium_2015 Serial 145  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: