|   | 
Details
   web
Records
Author Dutova, E.M.; Nikitenkov, A.N.; Pokrovskiy, V.D.; Banks, D.; Frengstad, B.S.; Parnachev, V.P.
Title Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation Type Journal Article
Year 2017 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 178-179 Issue Pages 63-76
Keywords Groundwater, Hydrochemical modelling, Mineralisation, Natural uranium, Ore, Solubility
Abstract Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software “HydroGeo”, has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO2 pressure (PCO2, open system) of 10−2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M – regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550–1000 mg L−1. Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L−1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO3 hydrofacies). The secondary minerals are typically “black” uranium oxides of mixed oxidation state (e.g. U3O7 and U4O9). For rock U content of 5–50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L−1, but with typical concentrations of up to 10 μg L−1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and PCO2 (low PCO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ dutova_modelling_2017 Serial (down) 114
Permanent link to this record
 

 
Author Milena-Pérez, A.; Piñero-García, F.; Benavente, J.; Expósito-Suárez, V.M.; Vacas-Arquero, P.; Ferro-García, M.A.
Title Uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes Type Journal Article
Year 2021 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 227 Issue Pages 106503
Keywords 234U/238U, Betic cordillera, Groundwater, Hydrogeochemistry, Uranium natural isotopes
Abstract This paper studies the uranium content and uranium isotopic disequilibria as a tool to identify hydrogeochemical processes from 52 groundwater samples in the province of Granada (Betic Cordillera, southeastern Spain). According to the geological complexity of the zone, three groups of samples have been considered. In Group 1 (thermal waters; longest residence time), the average uranium content was 2.63 ± 0.16 μg/L, and 234U/238U activity ratios (AR) were the highest of all samples, averaging 1.92 ± 0.30. In Group 2 (mainly springs from carbonate aquifers; intermediate residence time), dissolved uranium presented an average value of 1.34 ± 0.13 μg/L, while AR average value was 1.38 ± 0.25. Group 3 comes from pumping wells in a highly anthropized alluvial aquifer. In this group, where the residence time of the groundwater is the shortest of the three, average uranium content was 5.28 ± 0.26 μg/L, and average AR is the lowest (1.17 ± 0.12). In addition, the high dissolved uranium value and the low AR brought to light the contribution of fertilizers (Group 3). In the three groups, 235U/238U activity ratios were similar to the natural value of 0.046. Therefore, 235U detected in the samples comes from natural sources. This study is completed with the determination of major ions and physicochemical parameters in the groundwater samples and the statistical analysis of the data by using the Principal Component Analysis. This calculation indicates the correlation between uranium isotopes and bicarbonate and nitrate anions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ milena-perez_uranium_2021 Serial (down) 112
Permanent link to this record