|   | 
Details
   web
Records
Author Patel, D.; Pamidimukkala, P.; Chakraborty, D.
Title (up) Groundwater quality evaluation of Narmada district, Gujarat using principal component analysis Type Journal Article
Year 2024 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 24 Issue Pages 101050
Keywords Fluoride, Groundwater quality index, Principal component analysis, Uranium
Abstract In the present study, the ground water quality parameters were monitored during pre- and post-monsoon seasons across Narmada district, Gujarat, India. Monitoring was done in 89 drinking water samples collected by grid sampling method from the study area. Uranium and fluoride were analyzed along with associated parameters such as pH, dissolved oxygen, Cl−, NO3−, F−, SO42−, total alkalinity, total dissolved solids and hardness. In 4% samples the fluoride content was found to be above WHO permissible limits of 1.5 mg/L (2.36 mg/L in Undaimandava, 1.55 mg/L in Shira, 3.04 mg/L in Fatehpur and 1.83 mg/L in Dholivav) during pre-monsoon season (PRM) and 4.74 mg/L, 2.41 mg/L, 2.34 mg/L and 3.99 mg/L respectively in Bantawadi, Shira, Undai Mandava and Fatepur villages during post-monsoon (POM). The uranium level was within WHO limits in both POM and PRM seasons. The quality of the water was evaluated by Principal Component and Pearson Correlation statistical analysis techniques. The PRM and POM correlation study indicated a strong correlation of TDS with EC, Chloride, total alkalinity and bicarbonate and U while moderately strong correlation of TDS with fluoride were observed indicating that chloride, total alkalinity, bicarbonate, U and fluoride contributed to TDS and EC. Principal component analysis was applied for 14 variables, from which 3 factors were extracted during PRM and POM seasons. The extracted components, contributed 84.391% and 83.315%, to variation during PRM and POM seasons respectively. The study indicated that the analyzed water samples in Narmada district were safe for drinking purpose. However, Tilakwada tehsil groundwater was observed to be unsustainable for drinking, without further water treatment, but was appropriate for agricultural purposes. The study will help the residents of the district to understand the present water quality status and will also help in future management to protect the ground water of Narmada district.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ patel_groundwater_2024 Serial 148
Permanent link to this record
 

 
Author Androvitsanea, A.; Fawzy, M.; Fuchs, J.; Külls, C.; Fahlbusch, H.; Heiden, J.
Title (up) Hydrologische Bedingungen im Heraion von Samos vom 12. bis 8. Jh. v. Chr. und ihre Bedeutung für die wasserbauliche Infrastruktur Type Journal Article
Year 2018 Publication Environmental Water Engineering Abbreviated Journal
Volume 1 Issue 1 Pages 1-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Androvitsanea2018hydrologische Serial 17
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A.
Title (up) Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 100988
Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution
Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268
Permanent link to this record
 

 
Author Benito, G.; Rohde, R.; Seely, M.; Külls, C.; Dahan, O.; Enzel, Y.; Todd, S.; Botero, B.; Morin, E.; Grodek, T.
Title (up) Management of alluvial aquifers in two southern African ephemeral rivers: implications for IWRM Type Journal Article
Year 2010 Publication Water Resources Management Abbreviated Journal
Volume 24 Issue 4 Pages 641-667
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Benito2010management Serial 25
Permanent link to this record
 

 
Author Borrego-Alonso, D.; Quintana-Arnés, B.; Lozano, J.C.
Title (up) Natural radionuclides behaviour in drinking groundwaters from Castilla y León (Spain); radiological implications Type Journal Article
Year 2023 Publication Water Research Abbreviated Journal
Volume 245 Issue Pages 120616
Keywords Drinking water, Environmental monitoring, Natural radioactivity, Public health, Radiological characterisation
Abstract Since the coming into force of the European Council Directive 51/2013 EURATOM and its transposition into the Spanish legislation, the presence of radioactive substances in drinking waters must be kept under surveillance to ensure that the health protection requirements are met. Driven by this regulatory framework, in an attempt to know the starting point from which to design surveillance plans, the groundwaters intended for human consumption of Castilla y León (Spain) have been radiologically characterised by using both low-level γ-ray and α-particle spectrometry to determine the activity concentration of the natural radionuclides needed to account for the indicative dose estimation. This extensive research has comprised the radiological characterisation of more than 400 drinking water samples from one of the European Union’s largest regions. Furthermore, the gross α and gross β activities have been analysed. Results showed a high geographical variability that can be related to the hydrogeological formations where the groundwaters come from. The uranium isotopes, 234U and 238U, are the main radionuclides present in the analysed drinking waters reaching values up to 2000 mBq/L, in the southwestern and western of Castilla y León, where U-rich minerals are part of the host rock. High 210Pb and 226,228Ra occurrences are found in the low permeability igneous and metasedimentary hydrogeological formations of Salamanca province. From a public health protection point of view, 4.4% of the total drinking water samples from intakes exceeded the Indicative Dose parametric value of 0.1 mSv, which is a not negligible number of samples, being very likely related to granitic and metamorphosed host rock under specific local conditions. This fact highlights the need for research and consideration of special surveillance of the groundwaters from these areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ borrego-alonso_natural_2023 Serial 157
Permanent link to this record
 

 
Author Netzer, L.; Kurtzman, D.; Ben-Hur, M.; Livshitz, Y.; Katzir, R.; Nachshon, U.
Title (up) Novel approach to roof rainwater harvesting and aquifer recharge in an urban environment: Dry and wet infiltration wells comparison Type Journal Article
Year 2024 Publication Water Research Abbreviated Journal
Volume 252 Issue Pages 121183
Keywords Rainwater harvesting, Managed aquifer recharge, Urban hydrology, Infiltration wells
Abstract In urban environments there is a severe reduction of infiltration and groundwater recharge due to the existence of large impervious areas. During rain events, large volumes of water that could have recharged groundwater and surface water bodies are diverted into the municipal drainage system and lost from the freshwater storage. Moreover, extreme rain events impose high peak flows and large runoff volumes, which increase the risk of urban floods. Recent studies have suggested the use of rainwater harvesting for groundwater recharge, as a plausible solution for these challenges in dense urban environments. While the benefits of this approach are well understood, research on its practical, engineering, and hydrological aspects is relatively limited. The objective of the present study was to examine the use of infiltration wells for groundwater recharge with harvested rainwater collected from building rooftops under Mediterranean climate conditions. Two types of wells with similar hydraulic and technical properties were examined: a well that reaches the groundwater (wet well); and a well that discharges the harvested water into the unsaturated zone (dry well). Infiltration capacities of the wells were compared in controlled experiments conducted during summer months, and in operational recharge of harvested rainwater, during winter. Both dry and wet wells were found to be suitable for purposes of groundwater recharge with rooftop-harvested rainwater. Infiltration capacity of the wet well was about seven times greater than the infiltration capacity of the dry well. While the infiltration capacity of the wet well was constant throughout the entire length of the study (∼10 m3/h/m), the dry well infiltration capacity improved during winter (from 0.5 m3/h/m to 1.5 m3/h/m), a result of development of the dry well with time. Considering Tel-Aviv, Israel, as a case study for a dense modern city in a Mediterranean climate, it is demonstrated herein that the use of infiltration wells may reduce urban drainage by ∼40 %.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Netzer2024121183 Serial 230
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K.
Title (up) Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
Year 2020 Publication Water Science and Engineering Abbreviated Journal
Volume 13 Issue 2 Pages 95-105
Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth
Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Akter202095 Serial 247
Permanent link to this record
 

 
Author Demuth, S.; Külls, C.
Title (up) Probability analysis and regional aspects of droughts in southern Germany Type Journal Article
Year 1997 Publication Sustainability of Water Resources under Increasing Uncertainty Abbreviated Journal
Volume Issue 240 Pages 97
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Iahs Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Demuth1997probability Serial 35
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title (up) Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Marinos2022 Serial 82
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title (up) Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ w14050734 Serial 81
Permanent link to this record