|   | 
Details
   web
Records
Author Krüger, N.; Külls, C.; Bruggeman, A.; Eliades, M.; Christophi, C.; Rigas, M.; Eracleous, T.
Title (up) Groundwater recharge estimates with soil isotope profiles-is there a bias on coarse-grained hillslopes? Type Conference Article
Year 2020 Publication EGU General Assembly Conference Abstracts Abbreviated Journal
Volume Issue Pages 9840
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Krueger2020groundwater Serial 42
Permanent link to this record
 

 
Author Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L.
Title (up) Groundwater restoration following in-situ recovery (ISR) mining of uranium Type Journal Article
Year 2019 Publication Applied Geochemistry Abbreviated Journal
Volume 109 Issue Pages 104418
Keywords Aquifer stabilization, Ground water restoration, In-situ leach mining, In-situ recovery, Uranium
Abstract From 1950 through the early 1980’s New Mexico accounted for roughly half of domestic uranium (U) production for the nuclear power industry and the nation’s weapon programs. Increased interest in nuclear energy has led to proposals for renewed development using both underground mining and uranium in situ recovery (ISR). When feasible, ISR greatly reduces waste generated by the mining and milling processes, however, the ability to restore ground water to acceptable quality after ISR ends is uncertain. This research investigated two methods of stabilizing an aquifer following ISR. Batch and column studies were performed to evaluate chemical and biological methods of stabilization. Columns packed with ore were first leached with an aerated NaHCO3 ground water solution to simulate ISR. Constituents present at elevated concentrations after leaching included molybdenum (Mo), selenium (Se), U, and vanadium (V). Chemical stabilization was studied by passing a phosphate (PO43-) amended solution through the ore to achieve passivation of mineral surfaces by P precipitates. Microbial stabilization was studied by passing a lactate solution through the ore to stimulate growth of anaerobic metal- and sulfate-reducing organisms to reduce U and other elements to less soluble phases. Analyses of the solids from the columns after completion of these experiments by X-ray photo electron spectroscopy (XPS) identified phosphate on samples near the column inlet of the chemically stabilized columns. Microbial populations were characterized by Illumina DNA sequencing and confirmed the presence of metal- and sulfate-reducing organisms. Neither chemical nor microbial stabilization method achieved contaminant immobilization, which is believed due to limited mixing of the stabilization solutions with the contaminated leach solutions. These results emphasize that ground water hydrodynamics, especially mixing, must be considered in aquifer restoration of soluble constituents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ruiz_groundwater_2019 Serial 153
Permanent link to this record
 

 
Author Tisherman, R.A.; Rossi, R.J.; Shonkoff, S.B.C.; DiGiulio, D.C.
Title (up) Groundwater uranium contamination from produced water disposal to unlined ponds in the San Joaquin Valley Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 904 Issue Pages 166937
Keywords Groundwater, Oil & gas, Produced water, San Joaquin Valley, Uranium
Abstract In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are \textgreater400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tisherman_groundwater_2023 Serial 159
Permanent link to this record
 

 
Author Külls, C.; Schwarz, O.
Title (up) Grundwasseranreicherung in den Waldbeständen der Teninger Allmend bei Freiburg im Breisgau Type Book Chapter
Year 2000 Publication Beiträge zur Physischen Geographie Abbreviated Journal
Volume Issue Pages 67 - 78
Keywords
Abstract
Address
Corporate Author Fachbereich Geowissenschaften der Johann Wolfgang Goethe-Universität Frankfurt am Main Thesis
Publisher Werner-F. Bär Place of Publication Frankfurt am Main Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 72
Permanent link to this record
 

 
Author Kazemi, A.; Esmaeilbeigi, M.; Sahebi, Z.; Ansari, A.
Title (up) Health risk assessment of total chromium in the qanat as historical drinking water supplying system Type Journal Article
Year 2022 Publication Science of The Total Environment Abbreviated Journal
Volume 807 Issue Pages 150795
Keywords Qanat, Total chromium, Hazard quotient, Non-carcinogenic risk, Risk assessment, Eastern Iran
Abstract This study investigated the health risk assessment of total chromium (CrT) in qanats of South Khorasan, Eastern Iran. For this, concentration of CrT in a total of 83 qanats were measured in summer 2020. Samples were initially tested in the field for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). In the lab, collected samples were filtered and fixed with nitric acid (HNO3) for the detection of CrT using inductively coupled plasma mass spectrometry (ICP-MS). Hazard quotient (HQ) and carcinogenic risk assessments were considered to evaluate the risks of CrT to inhabitants. Results showed that concentration of CrT ranged from 1.79 to 1017.05 μg L-1, and a total of 25 stations illuminated CrT concentrations above the WHO standards (50 μg L-1). HQ demonstrated HQ < 1 for 90.37% of studied samples with negligible hazard, whereas 9.63% of stations illuminated HQ ≥ 1 meaning the presence of non-carcinogenic risk for water consumers. Carcinogenic risk (CR) exhibited CR > 1.00E-04 in 81.93% of qanats while 18.07% of stations had 1.00E-06 < CR < 1.00E-04 meaning no acceptable and acceptable CR for the studied qanats, respectively. Zoning map displayed that qanats in the south of South Khorasan possessed the highest HQ, but north regions showed the lowest ones. Together, CrT in qanats of South Khorasan is above the WHO limit, which results in a high risk of carcinogenicity for residents, and in turn, more efforts should be made to provide hygienic groundwater for consumers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kazemi2022150795 Serial 269
Permanent link to this record