|   | 
Details
   web
Records
Author Weerahewa, J.; Timsina, J.; Wickramasinghe, C.; Mimasha, S.; Dayananda, D.; Puspakumara, G.
Title (down) Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services Type Journal Article
Year 2023 Publication Agricultural Systems Abbreviated Journal
Volume 205 Issue Pages 103580
Keywords Agriculture, Climate change, Hydrology, Village tank cascade system, Tank irrigation, Watershed
Abstract CONTEXT Ancient irrigation systems (AISs) have been providing a multitude of ecosystem services to rural farming and urban communities in Asia and Africa, especially in arid and semi-arid climatic areas with low rainfall. Many AISs, however have now been degraded. A systematic analysis of AISs on their typologies, causes of degradation, and their ecosystem services is lacking. OBJECTIVE The objective of this review was to synthesize the knowledge on AISs on their typologies, status and causes of degradation, ecosystem services and functions, and identify gaps in research in Asia and Africa. METHOD A critical review of peer-reviewed journal papers, conference and workshop proceedings, book chapters, grey literature, and country reports was conducted. Qualitative and quantitative information from journal papers were used to conceptualize the typologies and analyze the status and causes of degradation, and ecosystems services and functions provided by the AISs. RESULTS AND CONCLUSION Based on the review, we classified AISs into three groups by source of irrigation water: Rainwater harvesting system (RHS) with small reservoirs, ground water based system, and floodwater based system. The RHSs, which used to receive reliable rainfall and managed by well cohesive social organizations for their maintenance and functioning in past, have now been silting due to extreme rainfall pattern and breakdown of the cohesive organizations in recent decades. In ground water based systems, indiscriminate development of deep tube wells causing siltation of channels has been a major challenge. In floodwater irrigation systems, irregular rainfall in the highlands and the breakage of irrigation structures by destructive floods were the main causes of degradation. Lack of maintenance and increased soil erosion, inadequate skilled manpower, and declining support from the government for repair and maintenance were the main causes of degradation of all AISs. The main ecosystem service provided by all AISs is water for agriculture. In tank- and pond-based systems, fish farming is also practiced. Tank irrigation systems provide various types of provisioning, regulatory, cultural and supporting services, especially in India and Sri Lanka. Ground water based systems provide water for domestic purposes and various cultural services. Floodwater based systems provide water for power generation and wildlife habitat maintenance and help in flood control. SIGNIFICANCE The knowledge generated through the review provide evidence-based information, and help aware governments, private sectors and development agencies for improved policy planning and decision making, and prioritizing the restoration, rehabilitation, and management of various AISs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Weerahewa2023103580 Serial 275
Permanent link to this record
 

 
Author Stavi, I.; Eldad, S.; Xu, C.; Xu, Z.; Gusarov, Y.; Haiman, M.; Argaman, E.
Title (down) Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev Type Journal Article
Year 2024 Publication Catena Abbreviated Journal
Volume 234 Issue Pages 107588
Keywords Geo-archaeology, Hydrological connectivity, Hydrological modelling, Runoff harvesting, Soil and water conservation, Watershed management
Abstract Ancient stone terrace walls aimed at harvesting water runoff and facilitating crop production are widespread across the drylands of the Middle East and beyond. In addition to retaining the scarce water resource, the terrace walls also conserve soil and thicken its profile along ephemeral stream channels (wadis) by decreasing fluvial connectivity and mitigating erosional processes. In this study, we created hydrological models for three wadis with ancient stone terrace walls in the arid northern Negev of Israel, where the predominant geophyte species is Asphodelus ramosus L. A two-dimensional (2D) rain-on-grid (RoG) approach with a resolution of 2 m was used to simulate the rain events with return periods of 10, 20, 50, and 99 % (10-y, 5-y, 2-y, and yearly, respectively) based on the Intensity-Duration-Frequency rain curves for the region. To evaluate the effect of stone terrace walls on fluvial hydrology and geomorphology, the ground level was artificially elevated by 20 cm at the wall locations in a digital terrain model (DTM), using the built-in HEC-RAS 2D terrain modification tool. Our results showed that the terraced wadis have a high capacity to mitigate runoff loss, but a lesser capacity to delay the peak flow. Yet, for all rainstorm return periods, peak flow mitigation was positively related to the number of terrace walls along the stream channel. Field surveys in two of the studied wadis demonstrated that the A. ramosus clones were found in proximity to the stone terrace walls, presumably due to the greater soil–water content there. The results thus suggest that the terrace walls provide improved habitat conditions for these geophytes, supporting their growth and regulating their distribution along the wadi beds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0341-8162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stavi2024107588 Serial 229
Permanent link to this record
 

 
Author Tariq, A.; Beni, L.H.; Ali, S.; Adnan, S.; Hatamleh, W.A.
Title (down) An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge Type Journal Article
Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 100998
Keywords Flood hydrology, AHP, Flood susceptibility, FR, Unit stream power, GIS
Abstract Floods are one of the most common natural disasters, resulting in the extensive destruction of infrastructure, property, and human life. The destructive potential of a flood depends on numerous factors, including the size of the flood, the rate of flooding, the time it takes for the water to move through a given area, the river’s planform and cross-section geometry, and other similar factors. The present study is a unique analysis of flood mapping that was accomplished with the help of the Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and hydrogeomorphic response to floods by integrating geospatial analysis and unit stream power modeling. The Indus catchment region of Pakistan is where the subject topic is put into practice. According to the hydrologic analysis of the yearly peak discharge, the hydro-station in Gilgit-Baltistan can move boulders measuring up to 0.5 m in height during significant flooding. On the other hand, there will be no change to the geometry of the cross-section throughout 1980–2020 in Gilgit-Baltistan. The flood susceptibility map is constructed using data from twelve influencing parameters, including elevation, proximity to the drainage network, slope, drainage density, geomorphology, rainfall, the curvature of the topography, flow accumulation, geology, land use, Topographic Wetness Index (TWI), and Stream Power Index (SPI). The area under the curve (AUC) approach, which demonstrates a substantial degree of accuracy (85% and 83%), is utilized to evaluate the effectiveness of the AHP and FR. The current study fills the gaps between the geospatial approach and the hydrogeomorphic assessment of flood to determine flood susceptibility.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Tariq2023100998 Serial 234
Permanent link to this record
 

 
Author Prusty, S.; Somu, P.; Sahoo, J.K.; Panda, D.; Sahoo, S.K.; Sahoo, S.K.; Lee, Y.R.; Jarin, T.; Sundar, L.S.; Rao, K.S.
Title (down) Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review Type Journal Article
Year 2022 Publication Chemosphere Abbreviated Journal
Volume 308 Issue Pages 136278
Keywords Adsorbents, Adsorption, Techniques, Uranium, Wastewater
Abstract Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ prusty_adsorptive_2022 Serial 131
Permanent link to this record
 

 
Author Zhang, Y.; Liu, X.; Yuan, S.; Song, J.; Chen, W.; Dias, D.
Title (down) A two-dimensional experimental study of active progressive failure of deeply buried Qanat tunnels in sandy ground Type Journal Article
Year 2023 Publication Soils and Foundations Abbreviated Journal
Volume 63 Issue 3 Pages 101323
Keywords Qanat tunnel, Sand, Failure effect, Soil arching, Model test
Abstract As an ancient underground hydraulic engineering facility, the Qanat system has been used to draw groundwater from arid regions. A qanat is a horizontal tunnel with a slight incline that draws groundwater from a higher location and delivers it to lower agricultural land. During long-term water delivery, the qanat tunnel has experienced different degrees of aging and collapse, which may result in the significant ground settlement and even disasters. This paper developed a two-dimensional laboratory system to investigate the influence of progressive failure on the stability of deeply buried qanat tunnels. The developed system is fully instrumented with a particle image velocimetry (PIV) system and earth pressure and displacement monitoring. A special cylindrical membrane tube is designed and connected to an advanced pressure–volume controller to simulate the step-wise failure process of the tunnel. Three model tests were conducted on a dry sand considering the buried qanat tunnels at three different depths. Experimental results clearly show the progressive evolution of soil arching effect in the dry sand associated with the progressive failure of the tunnels. The failure of the Qanat ground starts from the vault and develops upwards, which is closely related to the evolution of stress contour at three consecutive stages. Ground surface settlement and volume loss corresponding to three burial depths were compared. A deeply buried qanat tunnel has a small effect on surface settlement. Earth pressure evolution on the 2D plane shows the load redistribution when the qanat collapses. The maximum arch and the initial point of the limit state correspond to a volume loss of 12.5 % and 50 %, respectively. For the collapse of the deep buried qanat tunnel, ground earth pressure evolution can be divided into a stress-increasing region, stress-decreasing region, and no redistribution region. Furthermore, a multi trap-door model considering soil expansion is proposed to describe the progressive failure behavior and its effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-0806 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Zhang2023101323 Serial 274
Permanent link to this record