|   | 
Details
   web
Records
Author French, K.
Title (up) Indigenous knowledge, water management, and learning from our collective past Type Journal Article
Year 2022 Publication Journal of Anthropological Archaeology Abbreviated Journal
Volume 68 Issue Pages 101466
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-4165 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ French2022101466 Serial 253
Permanent link to this record
 

 
Author Rossetto, R.; Filippis, G.D.; Borsi, I.; Foglia, L.; Cannata, M.; Criollo, R.; Vázquez-Suñé, E.
Title (up) Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management Type Journal Article
Year 2018 Publication Environmental Modelling & Software Abbreviated Journal
Volume 107 Issue Pages 210-230
Keywords Free and Open Source Software, FREEWAT, Groundwater management, ICT, MODFLOW, QGIS
Abstract Integrating advanced simulation techniques and data analysis tools in a freeware Geographic Information System (GIS) provides a valuable contribution to the management of conjunctive use of groundwater (the world’s largest freshwater resource) and surface-water. To this aim, we describe here the FREEWAT (FREE and open source software tools for WATer resource management) platform. FREEWAT is a free and open source, QGIS-integrated interface for planning and management of water resources, with specific attention to groundwater. The FREEWAT platform couples the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. The FREEWAT environment allows storage of large spatial datasets, data management and visualization, and running of several distributed modelling codes (mainly belonging to the MODFLOW family). It simulates hydrologic and transport processes, and provides a database framework and visualization capabilities for hydrochemical analysis. Examples of real case study applications are provided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ rossetto_integrating_2018 Serial 92
Permanent link to this record
 

 
Author Vushe, A.; Amutenya, M.
Title (up) Investigating nitrate retention capacity, elementary and mineral composition of Kalahari sandy soils at Mashare farm in Namibia, Okavango river basin Type Journal Article
Year 2019 Publication Scientific African Abbreviated Journal
Volume 6 Issue Pages 00193
Keywords Irrigated field, Cultivated Kalahari sandy soil, Leaching, Nitrate retention capacity, Quartz mineral, Water saturated
Abstract Kalahari sands which cover a large part of Southern Africa and extend into Central Africa are infertile and marginal soils for intensive agriculture. Therefore, high nitrogen fertilisation rates may degrade ecosystems of rivers with catchments covered by the Kalahari sands. A study on Mashare Farm located in the Okavango River basin showed that irrigated Kalahari sandy soils had a nitrate retention capacity, which enabled the soil to resist nitrate leaching in water saturated conditions. The irrigated soils were modified by agricultural activities; hence this study investigated if uncultivated and cultivated Kalahari sand soils had similar nitrate retention properties. The elementary composition of the soils was investigated for obtaining an insight into chemical properties that may be causing the nitrate retention capacity. A permeameter was used to leach out nitrates from irrigated and uncultivated soil samples, and nitrate concentrations were measured on the leaching effluent from the permeameter. Elemental analysis was done on the cultivated and the uncultivated soil samples using a Scanning Electron Microscope, a portable X-Ray Fluorescence analyzer, and an X-Ray Diffraction machine, and the later was also used for crystalline structure analyses. Sieve analyses confirmed that the Mashare’s cultivated and uncultivated topsoils were similar, and both were similar to Botswana Kalahari topsoil. The irrigated and cultivated subsoil had a higher average nitrate retention capacity of 76% compared to 73% for the uncultivated subsoil. Both samples had the same elements, although the proportions were different. Both soil samples were dominated by a quartz mineral, but the field soil had traces of palygorskite. The presence of aluminum and transition metals outside the minerals structure, but as coatings on the quartz sand grains enhanced nitrate retention capacity properties of the Kalahari sand soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-2276 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ VUSHE2019e00193 Serial 277
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A.
Title (up) Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 100988
Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution
Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268
Permanent link to this record
 

 
Author Schwiede, M.; Duijnisveld, W.H.M.; Böttcher, J.
Title (up) Investigation of processes leading to nitrate enrichment in soils in the Kalahari Region, Botswana Type Journal Article
Year 2005 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume 30 Issue 11 Pages 712-716
Keywords Nitrate, Arenosol soils, Semi-arid, Kalahari, Cattle, Chloride, Travel time
Abstract In Southern Africa elevated nitrate concentrations are observed in mostly uninhabited semi-arid areas. In the Kalahari of Botswana groundwater locally exhibits concentrations up to 600mg/l. It is assumed, that nitrate found in the groundwater originates mainly from nitrogen input and transformations in the soils. Our investigations in the Kalahari between Serowe and Orapa show that cattle raising is an important source for enhanced nitrate concentrations in the soils (Arenosols). But also in termite mounds very high nitrate stocks were found, and under natural vegetation (acacia trees and shrubs) nitrate concentrations were mostly unexpectedly high. This nitrate enrichment in the soils poses a serious threat to the groundwater quality. However, calculated soil water age distributions in the unsaturated zone clearly show that today’s nitrate pollution of the groundwater below the investigation area could originate from natural sources, but cannot be caused by the current land use for cattle raising.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Integrated Water Resources Management (IWRM) and the Millennium Development Goals: Managing Water for Peace and Prosperity Approved no
Call Number THL @ christoph.kuells @ Schwiede2005712 Serial 276
Permanent link to this record
 

 
Author Wang, B.; Luo, Y.; Liu, J.-hui; Li, X.; Zheng, Z.-hong; Chen, Q.-qian; Li, L.-yao; Wu, H.; Fan, Q.-ren
Title (up) Ion migration in in-situ leaching (ISL) of uranium: Field trial and reactive transport modelling Type Journal Article
Year 2022 Publication Journal of Hydrology Abbreviated Journal
Volume 615 Issue Pages 128634
Keywords Acid in situ leaching, Banyan-Uul uranium deposit, Influence area, Reactive transport, Sensitivity analysis
Abstract Acid in-situ leaching (ISL) can be used as a mining technique for in situ uranium recover from underground. Acids and oxidants as lixiviants were continuously injected into a sandstone-type uranium deposit in Bayan-Uul (China). It was conducted to facilitate the dissolution of uranium minerals to generate uranyl ions, which could then be extracted for the recovery of uranium resources by the pumping cycle. A reactive transport model based on PHAST was developed to investigate the dynamic reactive migration process of uranium. The simulated results well reproduce the fluid dynamic evolution in the injecting and pumping units, as well as the dynamic release of uranium. The simulated leaching area indicates that the uranium ore leaching area was much larger than the acidification area. In addition, the pollution plume of uranium and acid water was larger than that of the leaching area, which can be used as a reference for uranium mining schemes. Furthermore, the parameter sensitivity analysis indicates the volume fraction of uranium ore and the reaction rate were the main factors affecting uranium leaching efficiency. Without considering the blockage of pores by precipitation, the Fe2+ in the reinjection fluid had a significant negative influence on uranium leaching.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ wang_ion_2022 Serial 195
Permanent link to this record
 

 
Author Kamash, Z.
Title (up) Irrigation technology, society and environment in the Roman Near East Type Journal Article
Year 2012 Publication Journal of Arid Environments Abbreviated Journal
Volume 86 Issue Pages 65-74
Keywords Army, Urbanism, Qanats, Dams, Field systems, Irrigation channels
Abstract This paper uses a multi-faceted approach to understand the use and distribution of different irrigation technologies in the Roman Near East (63 BC – AD 636), looking at the ways in which social and environmental factors affected the implementation of those irrigation technologies. It is argued that no single factor can fully explain how irrigation technologies were used across time and space in this region. Instead, choices in irrigation technology seem to have been governed by a complex nexus of both social and environmental factors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Ancient Agriculture in the Middle East Approved no
Call Number THL @ christoph.kuells @ Kamash201265 Serial 259
Permanent link to this record
 

 
Author Bonnetti, C.; Zhou, L.; Riegler, T.; Brugger, J.; Fairclough, M.
Title (up) Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle Type Journal Article
Year 2020 Publication Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 282 Issue Pages 113-132
Keywords Activity cycle, Pyrite composition, Roll front uranium deposits, S isotope and trace element fractionation
Abstract Complex pyrite textures associated with large changes in isotopic and trace element compositions are routinely assumed to be indicative of multi-faceted processes involving multiple fluid and sulfur sources. We propose that the features of ore-stage pyrite from roll front deposits across the world, revealed in exquisite detail via high-resolution trace element mapping by LA-ICP-MS, reflect the dynamic internal evolution of the biogeochemical processes responsible for sulfate reduction, rather than externally driven changes in fluid or sulfur sources through time. Upon percolation of oxidizing fluids into the reduced host-sandstones, roll front systems become self-organized, with a systematic reset of their activity cycle after each translation stage of the redox interface down dip of the aquifer. Dominantly reducing conditions at the redox interface favor the formation of biogenic framboidal pyrite (δ34S from −30.5 to −12.5‰) by bacterial sulfate reduction and the genesis of the U mineralization. As the oxidation front advances, oxidation of reduced sulfur minerals induces an increased supply of sulfate and metals in solution to the bacterial sulfate reduction zone that has similarly advanced down the flow gradient. Hence, this stage is marked by increased rates of the bacterial sulfate reduction associated with the crystallization of variably As-Co-Ni-Mo-enriched concentric pyrite (up to 10,000′s of ppm total trace contents) with moderately negative δ34S values (from −13.7 to −7.5‰). A final stage of pyrite cement with low trace element contents and heavier δ34S signature (from −6.9 to +18.8‰) marks the end of the roll front activity cycle and the transition from an open to a predominantly closed system behavior (negligible advection of fresh sulfate). Blocky pyrite cement is formed using the remaining sulfate, which now becomes quickly heavy according to a Rayleigh isotope fractionation process. This ends the cycle by depleting the nutrient supplies for the sulfate-reducing bacteria and cementing pore spaces within the host sandstone, effectively restricting fluid infiltration. This internally-driven roll front activity cycle results in systematic, large S isotope and trace element fractionation. Ultimately, the long-time evolution of the basin and fluid sources control the metal endowment and evolution of the system; these events, however, are unlikely to be preserved by the roll front, as a direct result of its hydrodynamic nature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ bonnetti_large_2020 Serial 185
Permanent link to this record
 

 
Author Chase, B.M.; Meadows, M.E.
Title (up) Late Quaternary dynamics of southern Africa’s winter rainfall zone Type Journal Article
Year 2007 Publication Earth-Science Reviews Abbreviated Journal
Volume 84 Issue 3 Pages 103-138
Keywords Last Glacial Maximum, palaeoenvironment, Quaternary, southern Africa, westerlies, winter rainfall zone
Abstract Variations in the nature and extent of southern Africa’s winter rainfall zone (WRZ) have the potential to provide important information concerning the nature of long-term climate change at both regional and hemispheric scales. Positioned at the interface between tropical and temperate systems, southern Africa’s climate is influenced by shifts in the Intertropical Convergence Zone, the westerlies, and the development and position of continental and oceanic anticyclones. Over the last glacial–interglacial cycle substantial changes in the amount and seasonality of precipitation across the subcontinent have been linked to the relative dominance of these systems. Central to this discussion has been the extent to which the region’s glacial climates would have been affected by expansions of Antarctic sea-ice, equatorward migrations of the westerlies, more frequent/intense winter storms and an expanded WRZ. This paper reviews the developing body of evidence pertaining to shifts in the WRZ, and the evolution of ideas that have been presented to explain the patterns observed. Dividing the region into three separate axes, along the western and southern margins of the continent and across the interior into the Karoo and the Kalahari, a range of evidence from both terrestrial sites and marine cores is considered, and potential expansions of the WRZ expansions are explored. Despite the limitations of many of the region’s proxy records, a coherent pattern has begun to develop of a significantly expanded WRZ during phases of the last glacial period, with the best-documented being between 32–17 ka. While more detailed inferences will require the recovery and analysis of longer and better-dated records, this synthesis provides a new baseline for further research in this key region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-8252 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ chase_late_2007 Serial 102
Permanent link to this record
 

 
Author Xie, T.; Lian, B.; Chen, C.; Qian, T.; Liu, X.; Shang, Z.; Li, T.; Wang, R.; Wang, Z.; Zhang, A.; Zhu, J.
Title (up) Leaching behaviour and mechanism of U, 226Ra and 210Pb from uranium tailings at different pH conditions Type Journal Article
Year 2023 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 270 Issue Pages 107300
Keywords Leaching experiments, Pb, Ra, U, Uranium tailings
Abstract A large number of radionuclides remain in uranium tailings, and U, 226Ra and 210Pb leach out with water chemistry, causing potential radioactive contamination to the surrounding environment. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling, mixed and homogenised, and analysed for mineral and chemical composition, microscopic morphology, U, 226Ra and 210Pb fugacity, static leaching and dynamic leaching of U, 226Ra and 210Pb in uranium tailings at different pH conditions. The variation of U, 226Ra and 210Pb concentrations in the leachate under different pH conditions with time was obtained, and the leaching mechanism was analysed. The results showed that the uranium tailings were dominated by quartz, plagioclase and other minerals, of which SiO2 and Al2O3 accounted for 65.45% and 13.32% respectively, and U, 226Ra and 210Pb were mainly present in the residue form. The results of the static leaching experiments show that pH mainly influences the leaching of U, 226Ra and 210Pb by changing their chemical forms and the particle properties of the tailings, and that the lower the pH the more favourable the leaching. The results of dynamic leaching experiments during the experimental cycle showed that the leaching concentration and cumulative release of U, 226Ra and 210Pb in the leach solution were greater at lower pH conditions than at higher pH conditions, and the leaching of U, 226Ra and 210Pb at different pH conditions was mainly from the water-soluble and exchangeable states. The present research results are of great significance for the environmental risk management and control of radioactive contamination in existing uranium tailings ponds, and are conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ xie_leaching_2023 Serial 200
Permanent link to this record