|   | 
Details
   web
Records
Author Kumar, V.; Setia, R.; Pandita, S.; Singh, S.; Mitran, T.
Title (down) Assessment of U and As in groundwater of India: A meta-analysis Type Journal Article
Year 2022 Publication Chemosphere Abbreviated Journal
Volume 303 Issue Pages 135199
Keywords Arsenic, Geology, Groundwater, Health risk, Soil texture, Uranium
Abstract More than 2.5 billion people depend upon groundwater worldwide for drinking, and giving quality water has become one of the great apprehensions of human culture. The contamination of Uranium (U) and Arsenic (As) in the groundwater of India is gaining global attention. The current review provides state-of-the-art groundwater contamination with U and As in different zones of India based on geology and soil texture. The average concentration of U in different zones of India was in the order: West Zone (41.07 μg/L) \textgreater North Zone (37.7 μg/L) \textgreater South Zone (13.5 μg/L)\textgreater Central Zone (7.4 μg/L) \textgreater East Zone (5.7 μg/L) \textgreaterSoutheast Zone (2.4 μg/L). The average concentration of As in groundwater of India is in the order: South Zone (369.7 μg/L)\textgreaterCentral Zone (260.4 μg/L)\textgreaterNorth Zone (67.7 μg/L)\textgreaterEast Zone (60.3 μg/L)\textgreaterNorth-east zone (9.78 μg/L)\textgreaterWest zone (4.14 μg/L). The highest concentration of U and As were found in quaternary sediments, but U in clay skeletal and As in loamy skeletal. Results of health risk assessment showed that the average health quotient of U in groundwater for children and adults was less than unity. In contrast, it was greater than unity for As posing a harmful impact on human health. This review provides the baseline data regarding the U and As contamination status in groundwater of India, and appropriate, effective control measures need to be taken to control this problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ kumar_assessment_2022 Serial 161
Permanent link to this record
 

 
Author Uddin, M.G.; Diganta, M.T.M.; Sajib, A.M.; Hasan, M.A.; Moniruzzaman, M.; Rahman, A.; Olbert, A.I.
Title (down) Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches Type Journal Article
Year 2023 Publication Heliyon Abbreviated Journal
Volume 9 Issue 9 Pages 19668
Keywords CCME index, Groundwater quality, Hydrogeochemistry, Irrigation indices, Nuclear power plant, Water quality index
Abstract Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3−), chloride (Cl−), phosphate (PO43−), sulfate (SO42−), nitrite (NO2−), nitrate (NO3−), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley’s ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the “poor” and “marginal” categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ uddin_assessment_2023 Serial 167
Permanent link to this record
 

 
Author Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.A.; Sumi, T.
Title (down) Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities Type Journal Article
Year 2023 Publication Journal of Environmental Management Abbreviated Journal
Volume 344 Issue Pages 118260
Keywords Flood, Urban planning, Sustainable cities, LID, Natural-based solutions, Alexandria
Abstract Cities have experienced rapid urbanization-induced harsh climatic events, especially flooding, inevitably resulting in negative and irreversible consequences for urban resilience and endangering residents’ lives. Numerous studies have analyzed the effects of anthropogenic practices (land use changes and urbanization) on flood forecasting. However, non-structural mitigation’s effectiveness, like Nature-Based Solutions (NBS), has yet to receive adequate attention, particularly in the Middle East and North Africa (MENA) region, which have become increasingly significant and indispensable for operationalizing cities efficiently. Therefore, our study investigated the predictive influence of incorporating one of the most common NBS strategies called low-impact development tools (LID) (such as rain gardens, bio-retention cells, green roofs, infiltration trenches, permeable pavement, and vegetative swale) during the urban planning of Alexandria, Egypt, which experiences the harshest rainfall annually and includes various urban patterns. City characteristics-dependent 14 LID scenarios were simulated with recurrence intervals ranging from 2 to 100 years using the LID Treatment Train Tool (LID TTT), depending on calibrated data from 2015 to 2020, by the Nash-Sutcliffe efficiency index and deterministic coefficient, and root-mean-square error with values of 0.97, 0.91, and 0.31, respectively. Our findings confirmed the significant effectiveness of combined LID tools on total flood runoff volume reduction by 73.7%, revealing that different urban patterns can be used in flood-prone cities, provided LID tools are considered in city planning besides grey infrastructure to achieve optimal mitigation. These results, which combined multiple disciplines and were not explicitly mentioned in similar studies in developing countries, may assist municipalities’ policymakers in planning flood-resistant, sustainable cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mabrouk2023118260 Serial 232
Permanent link to this record
 

 
Author Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F.
Title (down) Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
Year 2021 Publication Advances in Water Resources Abbreviated Journal
Volume 149 Issue Pages 103849
Keywords Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty
Abstract Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0309-1708 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220
Permanent link to this record
 

 
Author Ola, I.; Drebenstedt, C.; Burgess, R.M.; Mensah, M.; Hoth, N.; Okoroafor, P.; Külls, C.
Title (down) Assessing petroleum contamination in parts of the Niger Delta based on a sub-catchment delineated field assessment Type Journal Article
Year 2024 Publication Environmental Monitoring and Assessment Abbreviated Journal
Volume 196 Issue 6 Pages 585
Keywords
Abstract The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region’s strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1573-2959 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Ola2024 Serial 290
Permanent link to this record
 

 
Author Strandmann, P.A.E.P. von; Reynolds, B.C.; Porcelli, D.; James, R.H.; Calsteren, P. van; Baskaran, M.; Burton, K.W.
Title (down) Assessing continental weathering rates and actinide transport in the Great Artesian Basin Type Journal Article
Year 2006 Publication Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 70 Issue 18, Supplement Pages 497
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ strandmann_assessing_2006 Serial 116
Permanent link to this record
 

 
Author Lartigue, J.E.; Charrasse, B.; Reile, B.; Descostes, M.
Title (down) Aqueous inorganic uranium speciation in European stream waters from the FOREGS dataset using geochemical modelling and determination of a U bioavailability baseline Type Journal Article
Year 2020 Publication Chemosphere Abbreviated Journal
Volume 251 Issue Pages 126302
Keywords Bioavailable fraction, Geochemical mapping / baseline, Modelling, Speciation, Stream water, Uranium
Abstract The concentration of the bioavailable uranium fraction (Ubio) at the European scale was deduced by geochemical modelling considering several definitions found in the literature and the FOREGS European stream waters geochemical atlas dataset to produce a Ubio baseline. A sensitivity analysis was performed using three thermodynamic databases. We also investigated the link between total dissolved uranium (Uaq) concentrations, speciation and global stream water chemistry on the one hand, and the lithology and ages of the surrounding rocks on the other. The more U-enriched the stream sediments or rock type contexts are, which tends to be the case with rocks containing silicates (4.1 mg/kg), the less U-concentrated the stream waters are (0.15 μg/L). Sedimentary rocks lead to slightly higher Uaq concentrations (0.34 μg/L) even if the concentration in sediment (Used) is relatively low (1.6 mg/kg). This trend is reversed for Ubio, with higher concentrations in a crystalline context. The mean estimated Ubio value ranges from 1.5.10−3 to 65.3 ng/L and can fluctuate by 3 orders of magnitude depending on the considered definition as opposed to by 2 orders of magnitude accountable to differences between thermodynamic databases. The classification of the water in relation to the two surrounding rock lithologies makes it possible to reduce the mean variability for the Ubio concentrations. Irrespective of the definition of Ubio considered, in 59% of cases the Ubio fraction represents less than 1% of Uaq. Several threshold values relating to Ubio were proposed, assuming knowledge only of the aqueous concentrations of the major elements and Uaq.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ lartigue_aqueous_2020 Serial 141
Permanent link to this record
 

 
Author Rosen, M.R.; Burow, K.R.; Fram, M.S.
Title (down) Anthropogenic and geologic causes of anomalously high uranium concentrations in groundwater used for drinking water supply in the southeastern San Joaquin Valley, CA Type Journal Article
Year 2019 Publication Journal of Hydrology Abbreviated Journal
Volume 577 Issue Pages 124009
Keywords California, Central Valley, Geochemistry, Groundwater San Joaquin Valley, Uranium
Abstract Concentrations of uranium (U) \textgreater30 µg/L in groundwater are relatively uncommon in drinking water in the United States but can be of concern in those areas where complex interactions of aquifer materials and anthropogenic alterations of the natural flow regime mobilize U. High concentrations (\textgreater30 µg/L) of U in the southeastern San Joaquin Valley, California, USA, have been detected in 24 percent of 257 domestic, irrigation, and public-supply wells sampled across an approximately 110,000 km2 area. In this study we evaluated mechanisms for mobilization of U in the San Joaquin Valley proposed in previous studies, confirming mobilization by HCO3 and refuting mobilization by NO3 and we refined our understanding of the geologic sources of U to the scale of individual alluvial fans. The location of high concentrations depends on the interactions of geological U sources from fluvial fans that originate in the Sierra Nevada to the east and seepage of irrigation water that contains high concentrations of HCO3 that leaches U from the sediments. In addition, interactions with PO4 from fertilized irrigated fields may sequester U in the aquifer. Principal component analysis of the data demonstrates that HCO3 and ions associated with high total dissolved solids in the aquifer and the percentage of agriculture near the well sampled are associated with high U concentrations. Nitrate concentrations do not appear to control release of U to the aquifer. Age dating of the groundwater and generally increasing U concentrations of the past 25 years in resampled wells where irrigation is prevalent suggests that high U concentrations are associated with younger water, indicating that irrigation of fields over the past 100 years has significantly contributed to increasing concentrations and mobilizing U. In some places, the groundwater is supersaturated with uranyl-containing minerals, as would be expected in roll front deposits. In general, the interaction of natural geological sources high in U, the anthropogenically driven addition of HCO3 and possibly phosphate fertilizer, control the location and concentration of U in each individual fluvial fan, but the addition of nitrate in fertilizer does not appear control the location of high U. These geochemical interactions are complex but can be used to determine controls on anomalously high U in alluvial aquifers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ rosen_anthropogenic_2019 Serial 158
Permanent link to this record
 

 
Author Weerahewa, J.; Timsina, J.; Wickramasinghe, C.; Mimasha, S.; Dayananda, D.; Puspakumara, G.
Title (down) Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services Type Journal Article
Year 2023 Publication Agricultural Systems Abbreviated Journal
Volume 205 Issue Pages 103580
Keywords Agriculture, Climate change, Hydrology, Village tank cascade system, Tank irrigation, Watershed
Abstract CONTEXT Ancient irrigation systems (AISs) have been providing a multitude of ecosystem services to rural farming and urban communities in Asia and Africa, especially in arid and semi-arid climatic areas with low rainfall. Many AISs, however have now been degraded. A systematic analysis of AISs on their typologies, causes of degradation, and their ecosystem services is lacking. OBJECTIVE The objective of this review was to synthesize the knowledge on AISs on their typologies, status and causes of degradation, ecosystem services and functions, and identify gaps in research in Asia and Africa. METHOD A critical review of peer-reviewed journal papers, conference and workshop proceedings, book chapters, grey literature, and country reports was conducted. Qualitative and quantitative information from journal papers were used to conceptualize the typologies and analyze the status and causes of degradation, and ecosystems services and functions provided by the AISs. RESULTS AND CONCLUSION Based on the review, we classified AISs into three groups by source of irrigation water: Rainwater harvesting system (RHS) with small reservoirs, ground water based system, and floodwater based system. The RHSs, which used to receive reliable rainfall and managed by well cohesive social organizations for their maintenance and functioning in past, have now been silting due to extreme rainfall pattern and breakdown of the cohesive organizations in recent decades. In ground water based systems, indiscriminate development of deep tube wells causing siltation of channels has been a major challenge. In floodwater irrigation systems, irregular rainfall in the highlands and the breakage of irrigation structures by destructive floods were the main causes of degradation. Lack of maintenance and increased soil erosion, inadequate skilled manpower, and declining support from the government for repair and maintenance were the main causes of degradation of all AISs. The main ecosystem service provided by all AISs is water for agriculture. In tank- and pond-based systems, fish farming is also practiced. Tank irrigation systems provide various types of provisioning, regulatory, cultural and supporting services, especially in India and Sri Lanka. Ground water based systems provide water for domestic purposes and various cultural services. Floodwater based systems provide water for power generation and wildlife habitat maintenance and help in flood control. SIGNIFICANCE The knowledge generated through the review provide evidence-based information, and help aware governments, private sectors and development agencies for improved policy planning and decision making, and prioritizing the restoration, rehabilitation, and management of various AISs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Weerahewa2023103580 Serial 275
Permanent link to this record
 

 
Author Stavi, I.; Eldad, S.; Xu, C.; Xu, Z.; Gusarov, Y.; Haiman, M.; Argaman, E.
Title (down) Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev Type Journal Article
Year 2024 Publication Catena Abbreviated Journal
Volume 234 Issue Pages 107588
Keywords Geo-archaeology, Hydrological connectivity, Hydrological modelling, Runoff harvesting, Soil and water conservation, Watershed management
Abstract Ancient stone terrace walls aimed at harvesting water runoff and facilitating crop production are widespread across the drylands of the Middle East and beyond. In addition to retaining the scarce water resource, the terrace walls also conserve soil and thicken its profile along ephemeral stream channels (wadis) by decreasing fluvial connectivity and mitigating erosional processes. In this study, we created hydrological models for three wadis with ancient stone terrace walls in the arid northern Negev of Israel, where the predominant geophyte species is Asphodelus ramosus L. A two-dimensional (2D) rain-on-grid (RoG) approach with a resolution of 2 m was used to simulate the rain events with return periods of 10, 20, 50, and 99 % (10-y, 5-y, 2-y, and yearly, respectively) based on the Intensity-Duration-Frequency rain curves for the region. To evaluate the effect of stone terrace walls on fluvial hydrology and geomorphology, the ground level was artificially elevated by 20 cm at the wall locations in a digital terrain model (DTM), using the built-in HEC-RAS 2D terrain modification tool. Our results showed that the terraced wadis have a high capacity to mitigate runoff loss, but a lesser capacity to delay the peak flow. Yet, for all rainstorm return periods, peak flow mitigation was positively related to the number of terrace walls along the stream channel. Field surveys in two of the studied wadis demonstrated that the A. ramosus clones were found in proximity to the stone terrace walls, presumably due to the greater soil–water content there. The results thus suggest that the terrace walls provide improved habitat conditions for these geophytes, supporting their growth and regulating their distribution along the wadi beds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0341-8162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stavi2024107588 Serial 229
Permanent link to this record