|   | 
Details
   web
Records
Author Dávila, P.; Külls, C.; Weiler, M.
Title (down) A toolkit for groundwater mean residence time interpretation with gaseous tracers Type Journal Article
Year 2013 Publication Computers & Geosciences Abbreviated Journal
Volume 61 Issue Pages 116-125
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Davila2013toolkit Serial 22
Permanent link to this record
 

 
Author Sardo, M.S.; Jalalkamali, N.
Title (down) A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 17 Issue Pages 100754
Keywords System dynamics, Water resources management, Vensim, Management scenarios
Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266
Permanent link to this record
 

 
Author Shams, A.
Title (down) A rediscovered-new ‘Qanat’ system in the High Mountains of Sinai Peninsula, with Levantine reflections Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 110 Issue Pages 69-74
Keywords Foggara, Irrigation, Levant, Qanat, Sinai Peninsula
Abstract Since the Achaemenid Empire in 532–332 BCE, the ‘Qanat’ became the central irrigation system in the arid and semi-arid lands. Several terms are used for ‘Qanat’ in different regions, including the Karez, Qanat, Falaj type Daudi, Qanat Romani, Fuqara (Foggara), or Khettara as known in Central Asia, Persia, Southeast Arabia, Levant, North Africa, or Morocco respectively. Typically, the ground, spring or surface water (i.e. seasonal floods or river-fed) sources feed similar irrigation system. Based on thirteen years of extensive survey and analysis work (i.e. Sinai Peninsula Research 2000–2013 CE), this paper presents a rediscovered-new Qanat system in the High Mountains of Sinai Peninsula (i.e. UNESCO World Heritage Site ‘WHS’ no. 954) under chronological open question with Levantine reflections. In 1970s CE, the present Sinaitic site of Farsh Abu A’lwan or the anciently known Farsh Shamma’a was archaeologically surveyed without a direct reference to the Qanat system in-situ. Scientifically, it is an argumentative and unique Qanat system in terms of chronology, location (region), site (local-setting), water source, size and household utility. It is the only discovered ‘Qanat’ across the Sinai, connecting the Near East and North Africa.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Shams201469 Serial 248
Permanent link to this record
 

 
Author Martínez-Santos, P.; Martínez-Alfaro, P.E.
Title (down) A priori mapping of historical water-supply galleries based on archive records and sparse material remains. An application to the Amaniel qanat (Madrid, Spain) Type Journal Article
Year 2014 Publication Journal of Cultural Heritage Abbreviated Journal
Volume 15 Issue 6 Pages 656-664
Keywords Hydraulic heritage, Qanat, Groundwater, Foggara, Water-supply, Amaniel, Madrid
Abstract Engineering heritage refers to a broad variety of items of social, economic, aesthetic or historic relevance, including roads, dams, buildings and supply networks. Due to their utilitarian nature, their heritage value is often overlooked. This occurs even with those infrastructures that have played an essential role in underpinning the daily existence of entire civilizations. Underground water-supply networks provide an excellent example. Although there are exceptions, water networks tend to be functional in design, rather than monumental. Moreover, they present intricate linear layouts that often span several kilometres. This means they are costly to maintain once their operational life is over, and that they are prone to abandonment and destruction. Devising a priori protection strategies is important to preserve these valuable cultural assets. The following pages present a method to map linear structures based on archive records and sparse material remains. The method is illustrated through its application to the Amaniel qanat, a water-supply gallery built in Madrid, Spain, in the early 17th Century. An appraisal of the known remains was carried out first, leading to an inventory of galleries, shafts, shaft caps and deposits. This was followed by a thorough survey of over one thousand handwritten manuscripts, including physical descriptions of the aqueduct, budget accounts or water metering campaigns, among other documents. Known remains and written evidence were matched against original and auxiliary maps to reconstruct the itinerary of the aqueduct. This led to the identification of sectors where it is still possible to find remains in good condition. Thus, a priori mapping is advocated a valuable technique to locate and preserve these remains, as well as to devise non-invasive surveys and establish heritage protection zones.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Martinezsantos2014656 Serial 270
Permanent link to this record
 

 
Author Garvelmann, J.; Külls, C.; Weiler, M.
Title (down) A porewater-based stable isotope approach for the investigation of subsurface hydrological processes Type Journal Article
Year 2012 Publication Hydrology & Earth System Sciences Abbreviated Journal
Volume 16 Issue 2 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Garvelmann2012porewater Serial 24
Permanent link to this record
 

 
Author Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H.
Title (down) A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas Type Journal Article
Year 2023 Publication Journal of Hydrology Abbreviated Journal
Volume 621 Issue Pages 129538
Keywords Green stormwater infrastructure, Localized inlet pluvial flooding, Opportunity subwatersheds, Stormwater investment prioritization, Resilient urban watershed planning
Abstract Mitigation of localized pluvial flooding is one of the major resiliency goals in urban environments, and Green Stormwater Infrastructure (GSI) has the potential to deliver such an outcome. However, there is a lack of systematic approaches to prioritize investment in different candidate areas. This study provides a framework to identify vulnerable stormwater drainage inlets and their contributing areas, prioritize them, identify dominant factors in their selection, assess the potential of GSI in mitigating their overflows, and compare the impact and its cost to gray infrastructure upgrade alternatives. Using SWMM 5.1.013, decision trees, and a volumetric-based assessment of GSI overflow capture, we applied the framework to the City of Dallas, Texas, for three design storms with three GSI practices— bioretention cells, raingardens, and rainwater harvesting tanks. Results showed that there was a significant increase in the number of overflowing stormwater drainage inlets, referred to as hotspots, and their contributing subwatersheds, referred to as opportunity areas, with more intense storms especially in problematic watersheds. Also, prioritization results provided a series of maps to rank the opportunity areas based on overflow severity, recurrence of the overflows, and GSI availability. Moreover, classification results showed that inlet features, especially the inlet depth, were the dominant factors in the identification of the non-problematic inlets. Finally, the GSI impact assessment showed substantial overflow mitigation even at the “very high” severity levels when GSI is comprehensively deployed across opportunity areas. Despite gray infrastructure upgrades yielding higher reduction levels, their cost per cubic meter was higher than GSI. Therefore, a combination of GSI and gray results in maximum overflow reduction at a lower cost compared to common practices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Heidari2023129538 Serial 226
Permanent link to this record
 

 
Author Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y.
Title (down) A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
Year 2014 Publication Hydrometallurgy Abbreviated Journal
Volume 150 Issue Pages 99-106
Keywords Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution
Abstract Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201
Permanent link to this record
 

 
Author Naghedifar, S.M.; Ziaei, A.N.; Naghedifar, S.A.; Ansari, H.
Title (down) A new model for simulation of collection and conveyance sections of Qanat Type Journal Article
Year 2020 Publication Journal of Hydrology Abbreviated Journal
Volume 590 Issue Pages 125218
Keywords Richards’ equation, Saint-Venant equation, Numerical modeling, Qanat-aquifer system
Abstract In this paper, a new numerical model has been developed for simulation of Qanat-aquifer system. This model employs quasi-3D mixed-form of Richards’ equation and 1D fully-hydrodynamic form of Saint-Venant equations to simulate subsurface and overland flow, respectively. In order to handle non-orthogonal grids, subsurface flow module benefits from coordinate transformation technique. Using the above-mentioned governing equations, the presented model is able to simulate water flow inside both collection and conveyance sections of the gallery as well as dynamics of groundwater and vadose zone from impermeable bed rock to the soil-air interface. Since measured data corresponding to the hydraulics of Qanats is scarce, the overland and subsurface modules have been validated with analytical, numerical and experimental benchmarks in the literature. Subsequently, the model was employed to simulate ten different hypothetical aquifer-Qanat systems with different properties including the depth of groundwater aquifer, roughness of the gallery and saturated hydraulic conductivity of the gallery-aquifer boundary and the influence of each the parameters was monitored on the outflow rate at the appearance point of each Qanat. Furthermore, the advance of water inside two initially dry galleries were simulated at different time levels up to steady state. Eventually, the streamlines have been shown at the steady state for two Qanat-aquifer systems. Although, the presented study sheds light on some aspects of Qanat-aquifer hydraulics, the validation of the presented model with in-lab or on-field data remains ongoing for the future researches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Naghedifar2020125218 Serial 254
Permanent link to this record
 

 
Author Hamutoko, J.; Mapani, B.; Ellmies, R.; Bittner, A.; Külls, C.
Title (down) A fingerprinting method for the identification of uranium sources in alluvial aquifers: An example from the Khan and Swakop Rivers, Namibia Type Journal Article
Year 2014 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume 72 Issue Pages 34-42
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hamutoko2014fingerprinting Serial 19
Permanent link to this record
 

 
Author Ingham, E.S.; Cook, N.J.; Cliff, J.; Ciobanu, C.L.; Huddleston, A.
Title (down) A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia Type Journal Article
Year 2014 Publication Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 125 Issue Pages 440-465
Keywords
Abstract The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S=−43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into depositional conditions and sources of both sulfide and uranium mineralization and an improved understanding of pyrite geochemistry can also underpin an effective vector for uranium exploration at Beverley North and other sedimentary systems of the Lake Eyre Basin, as well as in comparable geological environments elsewhere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ingham_combined_2014 Serial 188
Permanent link to this record