|   | 
Details
   web
Records
Author Asare, P.; Atun, F.; Pfeffer, K.
Title Nature-Based Solutions (NBS) in spatial planning for urban flood mitigation: The perspective of flood management experts in Accra Type Journal Article
Year 2023 Publication Land Use Policy Abbreviated Journal
Volume 133 Issue Pages 106865
Keywords Naure-Based Solutions, Urban expansion, Urban floods, Urban flood management, Spatial planning, NBS integration
Abstract The rapid rate of urban expansion with its associated physical development in recent years conflicts with the urban ecosystem and the services it provides. In most Sub-Saharan African cities, rapid urban expansion often does not conform to existing spatial plans. Physical developments are sometimes carried out in unauthorized areas, contributing to urban floods. The Sub-Saharan African regions’ flood management strategies mainly focus on engineering solutions but have not been fully functional in mitigating urban floods. There is a scarcity of knowledge on how urban flood-related NBS measures can be part of the spatial development in Sub-Saharan African cities for effective flood management. In order to address this gap, this study employed content and text analysis of policy documents and interviews to understand how current spatial and flood mitigation schemes in Accra, Ghana reflect possible NBS applicability and identify possible approaches to integrating NBS into existing planning schemes to prevent urban floods. The study found that Accra’s spatial plans and flood mitigation schemes reflect a possibility of NBS integration. Additionally, the study unveiled techniques for integrating NBS measures and possible implementation barriers and facilitation in the Ghanaian context, which can be linked to combating the challenges that the Ghanaian spatial planning and flood management authorities face. The research, therefore, contributes to knowledge of how NBS can be integrated into spatial planning systems and flood mitigation schemes in Sub-Saharan African regions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Asare2023106865 Serial 236
Permanent link to this record
 

 
Author Holmes, M.; Campbell, E.E.; Wit, M. de; Taylor, J.C.
Title Can diatoms be used as a biomonitoring tool for surface and groundwater?: Towards a baseline for Karoo water Type Journal Article
Year 2023 Publication South African Journal of Botany Abbreviated Journal
Volume 161 Issue Pages 211-221
Keywords Bioindicator, Diatom, Hydraulic fracturing, Karoo, Water quality
Abstract The environmental risks from shale gas extraction through the unconventional method of ‘fracking’ are considerable and impact on water supplies below and above ground. Since 2010 the recovery of natural shale gas through fracking has been proposed in parts of the fragile semi-arid ecosystems that make up the Karoo biome in South Africa. These unique ecosystems are heavily reliant on underground water, intermittent and ephemeral springs, which are at great risk of contamination by fracking processes. Diatoms are present in all water bodies and reflect aspects of the environment in which they are located. As the possibility of fracking has not been removed, the aim of the project was to determine if diatoms could be used for rapid biomonitoring of underground and surface waters in the Karoo. Over a period of 24 months, water samples and diatom species were collected simultaneously from 65 sites. A total of 388 diatom taxa were identified from 290 samples with seasonal and substrate variation affecting species composition but not the environmental information. Species diversity information, on the other hand, often varied significantly between substrates within a single sample. Analysis using CCA established that the diatom composition was affected by lithium, oxidized nitrogen, electrical conductivity, and sulphate levels in the sampled water. We conclude that changes in diatom community composition in the Karoo do reflect the water chemistry and could be useful as bioindicators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-6299 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ holmes_can_2023 Serial 163
Permanent link to this record
 

 
Author Paradis, C.J.; Hoss, K.N.; Meurer, C.E.; Hatami, J.L.; Dangelmayr, M.A.; Tigar, A.D.; Johnson, R.H.
Title Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater Type Journal Article
Year 2022 Publication Journal of Contaminant Hydrology Abbreviated Journal
Volume 251 Issue Pages 104076
Keywords Desorption, Dissolution, Groundwater, Surface water, Tracer, Uranium
Abstract The recharge of stream water below the baseflow water table can mobilize groundwater contaminants, particularly redox-sensitive and sorptive metals such as uranium. However, in-situ tracer experiments that simulate the recharge of stream water to uranium-contaminated groundwater are lacking, thus limiting the understanding of the potential mechanisms that control the mobility of uranium at the field scale. In this study, a field tracer test was conducted by injecting 100 gal (379 l) of oxic river water into a nearby suboxic and uranium-contaminated aquifer. The traced river water was monitored for 18 days in the single injection well and in the twelve surrounding observation wells. Mobilization of uranium from the solid to the aqueous phase was not observed during the tracer test despite its pre-test presence being confirmed on the aquifer sediments from lab-based acid leaching. However, strong evidence of oxidative immobilization of iron and manganese was observed during the tracer test and suggested that immobile uranium was likely in its oxidized state as U(VI) on the aquifer sediments; these observations ruled out oxidation of U(IV) to U(VI) as a potential mobilization mechanism. Therefore, desorption of U(VI) appeared to be the predominant potential mobilization mechanism, yet it was clearly not solely dependent on concentration as evident when considering that uranium-poor river water (\textless0.015 mg/L) was recharged to uranium-rich groundwater (≈1 mg/L). It was possible that uranium desorption was limited by the relatively higher pH and lower alkalinity of the river water as compared to the groundwater; both factors favor immobilization. However, it was likely that the immobile uranium was associated with a mineral phase, as opposed to a sorbed phase, thus desorption may not have been possible. The results of this field tracer study successfully ruled out two common mobilization mechanisms of uranium: (1) oxidative dissolution and (2) concentration-dependent desorption and ruled in the importance of advection, dispersion, and the mineral phase of uranium.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ paradis_elucidating_2022 Serial 135
Permanent link to this record
 

 
Author Yabusaki, S.B.; Fang, Y.; Long, P.E.; Resch, C.T.; Peacock, A.D.; Komlos, J.; Jaffe, P.R.; Morrison, S.J.; Dayvault, R.D.; White, D.C.; Anderson, R.T.
Title Uranium removal from groundwater via in situ biostimulation: Field-scale modeling of transport and biological processes Type Journal Article
Year 2007 Publication Journal of Contaminant Hydrology Abbreviated Journal
Volume 93 Issue 1 Pages 216-235
Keywords Bioremediation, Biostimulation, Field experiment, Iron, Reactive transport, Sulfate, Uranium
Abstract During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ yabusaki_uranium_2007 Serial 156
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Zielinski, R.A.
Title Sandstone-hosted uranium deposits of the Colorado Plateau, USA Type Journal Article
Year 2023 Publication Ore Geology Reviews Abbreviated Journal
Volume 155 Issue Pages 105353
Keywords Colorado, Plateau, Uranium, Vanadium
Abstract More than 4,000 sandstone-hosted uranium occurrences host over 1.2 billion pounds of mined and in situ U3O8 throughout the Colorado Plateau. Most of the resources are in two distinct mineral systems with deposits hosted in the Triassic Chinle and Jurassic Morrison Formations. In the Chinle mineral system, base metal sulfides typically accompany mineralization. The Morrison mineral system is characterized by V/U ratios up to 20. The uranium source was likely volcanic ash preserved as bentonitic mudstones in the Brushy Basin Member of the Morrison Formation, and lithic volcanic clasts, ash shards, and bentonitic clay in the lower part of the Chinle Formation. Vanadium originated from two possible sources: iron–titanium oxides that are extensively altered in bleached rock near deposits or from similar minerals in variably bleached red beds interbedded with and beneath the Morrison. In Chinle-hosted deposits, in addition to volcanic ash, a contributing source of both vanadium and uranium is proposed here for the first time to be underlying red beds in the Moenkopi and Cutler Formations that have undergone a cycle of reddening-bleaching-reoxidation. Transport in both systems was likely in groundwater through the more permeable sandstones and conglomerate units. The association of uranium minerals with carbonate and more rarely apatite, suggests that transport of uranium was as a carbonate or phosphate complex. The first comprehensive examination of paleoclimate, paleotopography, and subsurface structure of aquifers coupled with analysis of the geochronology of deposits suggests that that there were distinct pulses of uranium mineralization/redistribution during the period from about 259 Ma to 12 Ma when oxidized mineralizing fluids were intermittently rejuvenated in the Plateau in response to changes in tectonic regime and climate. Multiple lines of evidence indicate that deposits formed at ambient temperatures of about 25 °C to no greater than about 140 °C. In both systems, deposits formed where groundwater flow slowed and was subject to evaporative concentration. Stagnant conditions allowed for prolonged interaction of U- and V-enriched groundwater with ferrous iron-bearing reductants, such as illite and iron–titanium oxides, and more rarely organic material such as plant debris. Paragenetically late in the sequence, reducing fluids introduced additional organic matter to some deposits. Reducing fluids and introduced organic matter (now amorphous and altered by radiolysis) may originate from regional petroleum systems where peak oil and gas generation was from ∼ 82 to ∼ 5 Ma. Our novel analysis indicates that these reducing fluids bleached rock and protected affected deposits from remobilization during exposure and weathering that followed uplift of the Plateau (∼80 to 40 Ma).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hall_sandstone-hosted_2023 Serial 111
Permanent link to this record