|   | 
Details
   web
Records
Author Lightfoot, D.R.
Title Moroccan khettara: Traditional irrigation and progressive desiccation Type Journal Article
Year 1996 Publication Geoforum Abbreviated Journal
Volume (up) 27 Issue 2 Pages 261-273
Keywords
Abstract A 300 km network of khettara (qanat) subsurface irrigation channels was excavated in the Tafilalt basin beginning in the late 14th century. More than 75 of these chains provided perennial water following the breakup of the ancient city of Sijilmassa. Khettara continued to function for much of the northern oasis until the early 1970s, when new technologies and government policies forced changes. Data on origins, maintenance, and current use were collected from archival sources, aerial photographs, Landsat imagery, and from interviews. Insufficient water resources and unsustainable practices have dramatically lowered the water table, drying up khettara. This has resulted in a loss of local control over water resources, abandonment of a sustainable irrigation system, and progressive desiccation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7185 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Lightfoot1996261 Serial 257
Permanent link to this record
 

 
Author Wolfe, P.
Title The Simplex Method For Quadratic Programming Type Journal Article
Year 1959 Publication Econometrica Abbreviated Journal
Volume (up) 27 Issue Pages 170
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Wolfe1959 Serial 285
Permanent link to this record
 

 
Author Klock, H.; Külls, C.; Udluft, P.
Title Estimation of relative recharge values for the northern Kalahari catchment, Namibia Type Journal Article
Year 2000 Publication Journal of African Earth Sciences Abbreviated Journal
Volume (up) 30 Issue 4 Pages 47-48
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Klock2000estimation Serial 33
Permanent link to this record
 

 
Author Schwiede, M.; Duijnisveld, W.H.M.; Böttcher, J.
Title Investigation of processes leading to nitrate enrichment in soils in the Kalahari Region, Botswana Type Journal Article
Year 2005 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume (up) 30 Issue 11 Pages 712-716
Keywords Nitrate, Arenosol soils, Semi-arid, Kalahari, Cattle, Chloride, Travel time
Abstract In Southern Africa elevated nitrate concentrations are observed in mostly uninhabited semi-arid areas. In the Kalahari of Botswana groundwater locally exhibits concentrations up to 600mg/l. It is assumed, that nitrate found in the groundwater originates mainly from nitrogen input and transformations in the soils. Our investigations in the Kalahari between Serowe and Orapa show that cattle raising is an important source for enhanced nitrate concentrations in the soils (Arenosols). But also in termite mounds very high nitrate stocks were found, and under natural vegetation (acacia trees and shrubs) nitrate concentrations were mostly unexpectedly high. This nitrate enrichment in the soils poses a serious threat to the groundwater quality. However, calculated soil water age distributions in the unsaturated zone clearly show that today’s nitrate pollution of the groundwater below the investigation area could originate from natural sources, but cannot be caused by the current land use for cattle raising.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Integrated Water Resources Management (IWRM) and the Millennium Development Goals: Managing Water for Peace and Prosperity Approved no
Call Number THL @ christoph.kuells @ Schwiede2005712 Serial 276
Permanent link to this record
 

 
Author Robati, A.; Barani, G.A.
Title Modeling of water surface profile in subterranean channel by differential quadrature method (DQM) Type Journal Article
Year 2009 Publication Applied Mathematical Modelling Abbreviated Journal
Volume (up) 33 Issue 3 Pages 1295-1305
Keywords Subterranean channel, Qanat, Differential quadrature method, Water surface profile, Porous media
Abstract This study, investigates the hydraulic of flow in a subterranean channel headspring. The continuity and momentum equations of flow in porous media considering real conditions were used and the basic equation of flow in a subterranean channel was resulted. This equation is very similar to the spatially varied flow with increasing discharge. An equation, defining the hydraulic parameters of a subterranean channel section was adopted. Then differential quadrature method (DQM), was applied to the equation of flow in subterranean channel, consequently the water surface profile was resulted. To illustrate the rightness of model, the hydraulic parameters of flow in the Gavgard branch of the Joopar Goharriz Qanat were measured and the water surface profile was determined. This water surface profile was compared to the water surface profile computed by the model, which are in good agreement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0307-904x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Robati20091295 Serial 249
Permanent link to this record
 

 
Author Khoury, H.N.; salameh, E.M.; Clark, I.D.
Title Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan Type Journal Article
Year 2014 Publication Applied Geochemistry Abbreviated Journal
Volume (up) 43 Issue Pages 49-65
Keywords
Abstract Secondary uranium encrustations are hosted in thick travertine and calcrete deposits of Pleistocene–Recent age in central Jordan. The central Jordan varicolored marble and travertine are equivalent to the active metamorphic area in Maqarin, north Jordan. More than 100 samples were collected from the outcrops of the varicolored marble, travertine, calcrete, and the yellow uranium encrustations. The secondary yellow encrustations are mainly composed of uranyl vanadate complexes. Tyuyamunite Ca(UO2)2V25+O8·3(H2O)–strelkinite Na2(UO2)2V2O8·6(H2O) solid solution series are the major components and their composition reflects changes in the Ca/Na ratio in solution. Potentially, new vanadium free calcium uranate phases (restricted to the varicolored marble) were identified with CaO:UO3 ratios different from the known mineral vorlanite (CaU6+)O4. Carbon and oxygen isotope data from calcite in the varicolored marble are characterized by Rayleigh-type enrichment in light isotopes associated with release of 13C and 18O enriched CO2 by high temperature decarbonation during combustion of the bituminous marl. Stable isotope results from uranium hosted travertine and calcrete varieties exhibit a wide range in isotopic values, between decarbonated and normal sedimentary carbonate rocks. The depleted δ13C and δ18O values in the travertine are related to the kinetic reaction of atmospheric CO2 with hyperalkaline Ca(OH)2 water. The gradual enrichment of δ13C and δ18O values in the calcrete towards equilibrium with the surrounding environment is related to continuous evaporation during seasonal dry periods. Uranium mineralization in central Jordan resulted from the interplay of tectonic, climatic, hydrologic, and depositional events. The large distribution of surficial uranium occurrences hosted in travertine and calcrete deposits is related to the artesian ascending groundwater that formed extensive lakes along NNW–SSE trending depressions. Fresh groundwater moved upward through the highly fractured phosphate, bituminous marl and varicolored marble to form unusual highly alkaline water (hydroxide–sulfate type) enriched with sensitive redox elements among which were U and V.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ khoury_mineralogy_2014 Serial 121
Permanent link to this record
 

 
Author Uhrie, J.L.; Drever, J.I.; Colberg, P.J.S.; Nesbitt, C.C.
Title In situ immobilization of heavy metals associated with uranium leach mines by bacterial sulfate reduction Type Journal Article
Year 1996 Publication Hydrometallurgy Abbreviated Journal
Volume (up) 43 Issue 1 Pages 231-239
Keywords
Abstract Laboratory experiments with mixed populations of sulfate-reducing bactreria were shown to mediate the removal of milligrams/liter concentrations of uranium, selenium, arsenic and vanadium from aqueous solution via reduction, precipitation and adsorption. Results of laboratory experiments with active sulfidogenic biomass suggest that injection of sulfate and a source of carbon could enhance anaerobic microbial activity in and around uranium leach mines leading to in situ immobilization contaminating metals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ uhrie_situ_1996 Serial 197
Permanent link to this record
 

 
Author Dahan, O.; Tatarsky, B.; Enzel, Y.; Külls, C.; Seely, M.; Benito, G.
Title Dynamics of flood water infiltration and ground water recharge in hyperarid desert Type Journal Article
Year 2008 Publication Groundwater Abbreviated Journal
Volume (up) 46 Issue 3 Pages 450-461
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Blackwell Publishing Inc Malden, USA Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Dahan2008dynamics Serial 27
Permanent link to this record
 

 
Author Zaeri, A.; Mohammadi, Z.; Rezanezhad, F.
Title Determining the source and mechanism of river salinity: An integrated regional study Type Journal Article
Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal
Volume (up) 47 Issue Pages 101411
Keywords River salinity, Salinization mechanism, Isotope, Halite brine, River sinuosity
Abstract Study region Zohreh River Basin, Southwest Iran Study focus The salinity of Zohreh River sharply increases in three salinity zones (SZs) along the river named SZ1, SZ2 (the focus of this study), and SZ3. Determining the salinity sources and salinization mechanism using an integrated approach including geological, hydrochemical, isotopic, geophysical, river sinuosity and hydrocarbon analysis are the main objectives of this study. The study focuses on the combination of evidence of regional-scale (i.e., river sinuosity and seismic data) and small-scale (i.e., drilling core analysis). New hydrologic insights for the region Among several known sources of river salinity, it was found that the water quality of the Zohreh River is mainly threatened by the salt-bearing Gachsaran Formation and oil-field brine. It is concluded that halite brine and oil-field brine simultaneously cause the salinization in SZ2, and their contributions were delineated to be 95% and 5%, respectively. The lack of reliable geological evidence to support halite dissolution in surficial layers by circulating waters suggests the possibility of a deep source of halite brine in SZ2. The results revealed that deep halite brine of the salt layers of Gachsaran Formation is mainly responsible for the salinization of SZ2. The mechanism of deep brine penetration to the river through the hidden fault failures detected by the combination of river sinuosity analysis and geophysical data for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-5818 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Zaeri2023101411 Serial 251
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F.
Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal
Volume (up) 50 Issue Pages 101585
Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin
Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-5818 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222
Permanent link to this record