toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F. url  openurl
  Title Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
  Year 2021 Publication Advances in Water Resources Abbreviated Journal  
  Volume 149 Issue Pages 103849  
  Keywords Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty  
  Abstract Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0309-1708 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220  
Permanent link to this record
 

 
Author (up) Li, X.; Shen, K.; Li, Q.; Deng, Y.; Zhu, P.; Wang, D. url  openurl
  Title Roll-over behavior in current-voltage curve introduced by an energy barrier at the front contact in thin film CdTe solar cell Type Journal Article
  Year 2018 Publication Solar Energy Abbreviated Journal  
  Volume 165 Issue Pages 27-34  
  Keywords AlO HRT layer, Band alignment, CdTe solar cell, Roll-over behavior  
  Abstract Roll-over phenomenon in the current–voltage (J–V) curve is often observed in a CdTe thin film solar cell. The roll-over phenomenon, which is occurred near the open-circuit voltage in a light J–V curve, is due to Schottky energy barrier formed at the CdTe/metal interface in a CdTe solar cell back contact. In this study we report a J–V roll-over phenomenon which is induced by an energy barrier at the front contact of a CdTe solar cell. Two kinds of oxides, namely, Al2O3 and SnO2, were deposited as high-resistance transparent (HRT) layer between the window layer CdS and the fluorine doped tin oxide (FTO) front electrode in CdTe solar cells. These two oxides present much different electronic band alignment with FTO and CdS. SnO2 formed almost no energy barrier with CdS, this allowed smooth transport for photo-generated electrons from CdTe to CdS and FTO. However, Al2O3 formed a high energy barrier with CdS. The rather high energy barrier with a value of 3.43 eV at the CdS/Al2O3 interface induced a J–V roll-over phenomenon in a CdTe thin film solar cell, which dramatically led to a quick decrease for the cell device efficiency. The electron transport at the FTO/Al2O3/CdS interface is governed by tunneling effect. The results presented in this study demonstrate that the band structure at the front electrode plays an important role for the performance of a CdTe thin film solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-092x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ li_roll-over_2018 Serial 187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: