toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Hebert, B.; Baron, F.; Robin, V.; Lelievre, K.; Dacheux, N.; Szenknect, S.; Mesbah, A.; Pouradier, A.; Jikibayev, R.; Roy, R.; Beaufort, D. url  openurl
  Title Quantification of coffinite (USiO4) in roll-front uranium deposits using visible to near infrared (Vis-NIR) portable field spectroscopy Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 199 Issue Pages 53-59  
  Keywords Coffinite, Mineral quantification, Near infrared, Ore exploration, Portable field spectroscopy, Roll-front deposits  
  Abstract Coffinite (USiO4) is a common uranium-bearing mineral of roll-front uranium deposits. This mineral can be identified by the visible near infrared (Vis-NIR) portable field spectrometers used in mining exploration. However, due to the low detection limits and associated errors, the quantification of coffinite abundance in the mineralized sandstones or sandy sediments of roll-front uranium deposits using Vis-NIR spectrometry requires a specific methodological development. In this study, the 1135 nm absorption band area is used to quantify the abundance of coffinite. This absorption feature does not interfere with NIR absorption bands of any other minerals present in natural sands or sandstones of uranium roll-front deposits. The correlation between the 1135 nm band area and coffinite content was determined from a series of spectra measured from prepared mineral mixtures. The samples were prepared with a range of weighted amounts of arenitic sands and synthetic coffinite simulating the range of uranium concentration encountered in roll-front uranium deposits. The methodology presented in this study provides the quantification of the coffinite content present in sands between 0.03 wt% to 1 wt% coffinite with a detection limit as low as 0.005 wt%. The integrated area of the 1135 nm band is positively correlated with the coffinite content of the sand in this range, showing that the method is efficient to quantify coffinite concentrations typical of roll-front uranium deposits. The regression equation defined in this study was then used as a reference to predict the amount of natural coffinite in a set of mineralized samples from the Tortkuduk uranium roll-front deposit (South Kazakhstan).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hebert_quantification_2019 Serial 184  
Permanent link to this record
 

 
Author (up) Robin, V.; Beaufort, D.; Tertre, E.; Reinholdt, M.; Fromaget, M.; Forestier, S.; Boissezon, H. de; Descostes, M. url  openurl
  Title Fate of dioctahedral smectites in uranium roll front deposits exploited by acidic In Situ Recovery (ISR) solutions Type Journal Article
  Year 2020 Publication Applied Clay Science Abbreviated Journal  
  Volume 187 Issue Pages 105484  
  Keywords Dissolution, In situ recovery, Ion exchange, Post mining, Remediation, Smectite  
  Abstract In Situ Recovery (ISR) is the most important process of uranium production in the world (50%). It consists of an injection of a leaching solution into a permeable mineralized aquifer (sandstone), pumping of the solution after dissolution of the ore minerals and recovery of the uranium from the pregnant solution in a surface plant. In this context, the fate of swelling clay minerals such as smectites is of main importance due to their role in the mobility of cationic elements by diverse geochemical processes such as ion-exchange reactions or dissolution. The present study details analysis of dioctahedral smectites before and after in-situ leaching by acidic (H2SO4) ISR solutions. Samples were collected from two sedimentary basins hosting some of the main uranium roll front deposits exploited by acidic ISR (Tortkuduk deposit, Shu-Saryssu basin, Kazakhstan, and Dulaan Uul and Zoovch Ovoo deposits, Sainshand basin, Mongolia). Scanning Electron Microscope and X-Ray Diffraction analysis revealed that dioctahedral smectite is a ubiquitous mineral in all analyzed samples, before and after acidification, and revealed a difference of crystal chemistry of the smectites between deposits of Kazakhstan (beidellite type) and Mongolia (montmorillonite type). Chemical analysis and semi-quantification of the smectites before and after acidification also revealed a difference in chemical reactivity, with a higher dissolution of montmorillonite layers compared to beidellite ones, and the importance of ion-exchange reactions. These findings are consistent with literature data obtained on model systems. The persistence of dioctahedral smectites after several years of acidification is crucial for the understanding of geochemical processes during uranium production or remediation of the aquifers. Finally, based on the analysis of samples from U-deposits hosted in both sedimentary basins, a schematic model of the impact of acid solutions on dioctahedral smectite was proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1317 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ robin_fate_2020 Serial 179  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: