toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ammar, F.H.; Deschamps, P.; Chkir, N.; Zouari, K.; Agoune, A.; Hamelin, B. url  openurl
  Title Uranium isotopes as tracers of groundwater evolution in the Complexe Terminal aquifer of southern Tunisia Type Journal Article
  Year 2020 Publication Quaternary International Abbreviated Journal  
  Volume (down) 547 Issue Pages 33-49  
  Keywords CT southern Tunisia, Holocene, Mixing, Radicarbon, Uranium isotopes, Water-rock interaction  
  Abstract The Complexe Terminal (CT) multi-layer aquifer is formed by Neogene/Paleogene sand deposits, Upper Senonian (Campanian-Maastrichtian limestones) and Turonian carbonates. The chemical composition and isotopes of carbon and uranium were investigated in groundwater sampled from the main hydrogeological units of the (CT) aquifer in southern Tunisia. We paid special attention to the variability of uranium contents and isotopes ratio (234U/238U) to provide a better understanding of the evolution of the groundwater system. Uranium concentrations range from 1.5 to 19.5 ppb, typical of oxic or mildly reducing conditions in groundwaters. The lowest concentrations are found southeast of the study area, where active recharge is supposed to take place. When looking at the isotope composition, it appears that all the samples, including those from carbonate levels, are in radioactive disequilibrium with significant 234U excess. A clear-cut distinction is observed between Turonian and Senonian carbonate aquifers on the one hand, with 234U/238U activity ratios between 1.1 and 1.8, and the sandy aquifer on the other hand, showing higher ratios from 1.8 to 3.2. The distribution of uranium in this complex aquifer system seems to be in agreement with the lithological variability and are ultimately a function of a number of physical and chemical factors including the uranium content of the hosting geological formation, water-rock interaction and mixing between waters having different isotopic signatures. Significant relationships also appear when comparing the uranium distribution with the major ions composition. It is noticeable that uranium is better correlated with sulfate, calcium and magnesium than with other major ions as chloride or bicarbonate. The 14C activities and δ13C values of DIC cover a wide range of values, from 1.1 pmc to 30.2 pmc and from −3.6‰ to −10.7‰, respectively. 14C model ages estimated by the Fontes and Garnier model are all younger than 22 Ka and indicate that the recharge of CT groundwater occurred mainly during the end of the last Glacial and throughout the Holocene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ammar_uranium_2020 Serial 119  
Permanent link to this record
 

 
Author Belz, L.; Schüller, I.; Wehrmann, A.; Köster, J.; Wilkes, H. url  openurl
  Title The leaf wax biomarker record of a Namibian salt pan reveals enhanced summer rainfall during the Last Glacial-Interglacial Transition Type Journal Article
  Year 2020 Publication Palaeogeography, Palaeoclimatology, Palaeoecology Abbreviated Journal  
  Volume (down) 543 Issue Pages 109561  
  Keywords -Alkanes, -Alkanols, Late Quaternary, Organic geochemistry, Palaeohydrology, Southern Africa  
  Abstract Conventional continental geoarchives are rarely available in arid southern Africa. Therefore, palaeoclimate data in this area are still patchy and late Quaternary climate development is only poorly understood. In the western Kalahari, salt pans (playas, ephemeral lakes) are common and can feature quasi-continuous sedimentation. This study presents the first climate-related biomarker record using sediments from the Omongwa Pan, a Kalahari salt pan located in eastern Namibia. Our approach to reconstruct vegetation and hydrology focuses on biogeochemical bulk parameters and plant wax-derived lipid biomarkers (n-alkanes, n-alkanols, and fatty acids) and their compound-specific carbon and hydrogen isotopic compositions. The presented record reaches back to 27 ka. During the glacial, rather low δ2H values of n-alkanes and low sediment input exclude a strong influence of winter rainfall. n-Alkane and n-alkanol distributions and δ13C values of n-hentriacontane (n-C31) indicate a shift to a vegetation with a higher proportion of C4 plants at the end of the Last Glacial Maximum until the end of Heinrich Stadial I (ca. 18–14.8 ka), which we interpret to indicate an abrupt excursion to a short wetter period likely to be caused by a temporary southward shift of the Intertropical Convergence Zone. Shifts in δ2H values of n-C31 and plant wax parameters give evidence for changes to drier conditions during early Holocene. Comparison of this dataset with representative continental records from the region points to a major influence of summer rainfall at Omongwa Pan during the regarded time span and demonstrates the potential of southern African salt pans as archives for biomarker-based climate proxies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-0182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ belz_leaf_2020 Serial 104  
Permanent link to this record
 

 
Author Liesch, T.; Hinrichsen, S.; Goldscheider, N. url  openurl
  Title Uranium in groundwater — Fertilizers versus geogenic sources Type Journal Article
  Year 2015 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 536 Issue Pages 981-995  
  Keywords Drinking water, Fertilizer, Geogenic background, Groundwater, Uranium  
  Abstract Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liesch_uranium_2015 Serial 145  
Permanent link to this record
 

 
Author Pavelic, P.; Srisuk, K.; Saraphirom, P.; Nadee, S.; Pholkern, K.; Chusanathas, S.; Munyou, S.; Tangsutthinon, T.; Intarasut, T.; Smakhtin, V. url  openurl
  Title Balancing-out floods and droughts: Opportunities to utilize floodwater harvesting and groundwater storage for agricultural development in Thailand Type Journal Article
  Year 2012 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 470-471 Issue Pages 55-64  
  Keywords Water scarcity, Flooding, Drought, Managed aquifer recharge, Floodwater harvesting, Chao Phraya River Basin  
  Abstract Summary Thailand’s naturally high seasonal endowment of water resources brings with it the regularly experienced problems associated with floods during the wet season and droughts during the dry season. Downstream-focused engineering solutions that address flooding are vital, but do not necessarily capture the potential for basin-scale improvements to water security, food production and livelihood enhancement. Managed aquifer recharge, typically applied to annual harvesting of wet season flows in dry climates, can also be applied to capture, store and recover episodic extreme flood events in humid environments. In the Chao Phraya River Basin it is estimated that surplus flows recorded downstream above a critical threshold could be harvested and recharged within the shallow alluvial aquifers in a distributed manner upstream of flood prone areas without significantly impacting existing large-medium storages or the Gulf and deltaic ecosystems. Capturing peak flows approximately 1year in four by dedicating around 200km2 of land to groundwater recharge would reduce the magnitude of flooding and socio-economic impacts and generate around USD 250M/year in export earnings for smallholder rainfed farmers through dry season cash cropping without unduly compromising the demands of existing water users. It is proposed that farmers in upstream riparian zones be co-opted as flood harvesters and thus contribute to improved floodwater management through simple water management technologies that enable agricultural lands to be put to higher productive use. Local-scale site suitability and technical performance assessments along with revised governance structures would be required. It is expected that such an approach would also be applicable to other coastal-discharging basins in Thailand and potentially throughout the Asia region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Pavelic201255 Serial 246  
Permanent link to this record
 

 
Author Etschmann, B.; Liu, W.; Li, K.; Dai, S.; Reith, F.; Falconer, D.; Kerr, G.; Paterson, D.; Howard, D.; Kappen, P.; Wykes, J.; Brugger, J. url  openurl
  Title Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits Type Journal Article
  Year 2017 Publication Chemical Geology Abbreviated Journal  
  Volume (down) 463 Issue Pages 29-49  
  Keywords Arsenic, Coal, EXAFS and XANES, germanium, Hydrothermal fluids, Metallogenesis, Speciation, Tungsten  
  Abstract Most of the World’s germanium (Ge) is mined from Ge-rich lignite, where it is commonly associated with elevated arsenic (As), tungsten (W) and beryllium (Be) contents. Over the past decade, new evidence showing that World-class Ge deposits result from the interaction of hydrothermal fluids with organic matter in coal seams has emerged. Yet, the chemical state of Ge and associated metals in lignite remains poorly understood. We used Mega-pixel Synchrotron X-ray Fluorescence (MSXRF), X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) to characterize the oxidation states and chemical bonding environment of Ge, As, and W in two world-class Mesozoic Ge-in-lignite deposits (Lincang, Yunnan, southwestern China; Wulantuga, Inner Mongolia, northeastern China); in lignite-bearing uranium (U) ores from the Beverley deposit (South Australia) hosted in Eocene sandstones; and in lignite and preserved wood in late Oligocene-Miocene fluviatile sediments (Gore, Southland, New Zealand). The aim was to improve our understanding of the enrichment mechanism of Ge in lignite and better evaluate the environmental mobility of Ge and some of the associated metals (specifically As and W) in lignite ores. In all samples, chemical maps show that Ge is distributed homogeneously (down to 2μm) within the organic matter. XANES and EXAFS data show that Ge exists in the tetravalent oxidation state and in a distorted octahedral coordination with O, consistent with complexing of Ge by organic ligands. In some pyrite-bearing samples, a minor fraction of Ge is also present as Ge(IV) in association with pyrite. In contrast, As displays a more complex speciation pattern, sometimes even in a single sample, including As(III), As(V), and As(−I/+II) in solid solution in sulfides. Arsenic in sulfides occurs in anionic and cationic forms, i.e., it shows both the common substitution for S22− and the substitution for Fe recently discovered in some hydrothermal pyrites. Tungsten was present as W(VI) in distorted octahedral (3+3) coordination. The EXAFS data confirm the absence or minor contribution of individual W-rich minerals such as scheelite or ferberite to W mass balance in the studied samples. These data show that Ge, W, and probably some As are scavenged via formation of insoluble, oxygen-bridged metal organic complexes in lignite. Destruction of the organic ligands responsible for fixing Ge and W (As) in these lignites is required for liberating the metals, e.g. from waste materials. Geochemical modelling suggests that Ge, W, Be and As all can be extracted from granitic rocks by dilute, low temperature hydrothermal fluids. Germanium is transported mainly as the tetrahedral Ge(OH)4(aq) complex, but fixed as an octahedral oxy-bridged organic complex. The same situation is valid for W, which is transported at the tetrahedral tungstate ion, but most likely scavenged via formation of a 6-coordinated metal-organic species. The Ge-Be-W±As association in Ge-rich coals reflects the source of the metals as well as related scavenging mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ etschmann_enrichment_2017 Serial 183  
Permanent link to this record
 

 
Author Lim, S.; Chase, B.M.; Chevalier, M.; Reimer, P.J. url  openurl
  Title 50,000years of vegetation and climate change in the southern Namib Desert, Pella, South Africa Type Journal Article
  Year 2016 Publication Palaeogeography, Palaeoclimatology, Palaeoecology Abbreviated Journal  
  Volume (down) 451 Issue Pages 197-209  
  Keywords Climate reconstruction, Late Quaternary, Namib Desert, Pollen, Rock hyrax middens, South Africa  
  Abstract This paper presents the first continuous pollen record from the southern Namib Desert spanning the last 50,000years. Obtained from rock hyrax middens found near the town of Pella, South Africa, these data are used to reconstruct vegetation change and quantitative estimates of temperature and aridity. Results indicate that the last glacial period was characterised by increased water availability at the site relative to the Holocene. Changes in temperature and potential evapotranspiration appear to have played a significant role in determining the hydrologic balance. The record can be considered in two sections: 1) the last glacial period, when low temperatures favoured the development of more mesic Nama-Karoo vegetation at the site, with periods of increased humidity concurrent with increased coastal upwelling, both responding to lower global/regional temperatures; and 2) the Holocene, during which time high temperatures and potential evapotranspiration resulted in increased aridity and an expansion of the Desert Biome. During this latter period, increases in upwelling intensity created drier conditions at the site. Considered in the context of discussions of forcing mechanisms of regional climate change and environmental dynamics, the results from Pella stand in clear contrast with many inferences of terrestrial environmental change derived from regional marine records. Observations of a strong precessional signal and interpretations of increased humidity during phases of high local summer insolation in the marine records are not consistent with the data from Pella. Similarly, while high percentages of Restionaceae pollen has been observed in marine sediments during the last glacial period, they do not exceed 1% of the assemblage from Pella, indicating that no significant expansion of the Fynbos Biome has occurred during the last 50,000years. These findings pose interesting questions regarding the nature of environmental change in southwestern Africa, and the significance of the diverse records that have been obtained from the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-0182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lim_50000years_2016 Serial 107  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal  
  Volume (down) 428 Issue Pages 131180  
  Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
 

 
Author Gómez, P.; Garralón, A.; Buil, B.; Turrero, M.J.; Sánchez, L.; Cruz, B. de la url  openurl
  Title Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine Type Journal Article
  Year 2006 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 366 Issue 1 Pages 295-309  
  Keywords Geochemical modeling, Granite, Groundwater, Uranium mine, Uranium retention  
  Abstract This paper describes the processes leading to uranium distribution in the groundwater of five boreholes near a restored uranium mine (dug in granite), and the environmental impact of restoration work in the discharge area. The groundwater uranium content varied from \textless1 μg/L in reduced water far from the area of influence of the uranium ore-containing dyke, to 104 μg/L in a borehole hydraulically connected to the mine. These values, however, fail to reflect a chemical equilibrium between the water and the pure mineral phases. A model for the mobilization of uranium in this groundwater is therefore proposed. This involves the percolation of oxidized waters through the fractured granite, leading to the oxidation of pyrite and arsenopyrite and the precipitation of iron oxyhydroxides. This in turn leads to the dissolution of the primary pitchblende and, subsequently, the release of U(VI) species to the groundwater. These U(VI) species are retained by iron hydroxides. Secondary uranium species are eventually formed as reducing conditions are re-established due to water–rock interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gomez_modeling_2006 Serial 162  
Permanent link to this record
 

 
Author Boumaiza, L.; Ammar, S.B.; Chesnaux, R.; Stotler, R.L.; Mayer, B.; Huneau, F.; Johannesson, K.H.; Levison, J.; Knöller, K.; Stumpp, C. url  openurl
  Title Nitrate sources and transformation processes in groundwater of a coastal area experiencing various environmental stressors Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume (down) 345 Issue Pages 118803  
  Keywords Aquifer, Denitrification, MixSIAR, Nitrate, Nitrification, Stable isotopes  
  Abstract In coastal salinized groundwater systems, contamination from various nitrate (NO3) inputs combined with complex hydrogeochemical processes make it difficult to distinguish NO3 sources and identify potential NO3 transformtation processes. Effective field-based NO3 studies in coastal areas are needed to improve the understanding of NO3 contamination dynamics in groundwater of such complex coastal systems. This study focuses on a typical Mediterranean coastal agricultural area, located in Tunisia, experiencing substantial NO3 contamination from multiple anthropogenic sources. Here, multiple isotopic tracers (δ18OH2O, δ2HH2O, δ15NNO3, δ18ONO3, and δ11B) combined with a Bayesian isotope MixSIAR model are used (i) to identify the major NO3 sources and their contributions, and (ii) to describe the potential NO3 transformation processes. The measured NO3 concentrations in groundwater are above the natural baseline threshold, suggesting anthropogenic influence. The measured isotopic composition of NO3 indicates that manure, soil organic matter, and sewage are the potential sources of NO3, while δ11B values constrain the NO3 contamination to manure; a finding that is supported by the results of MixSIAR model revealing that manure-derived NO3 dominates over other likely sources. Nitrate derived from manure in the study area is attributed to organic fertilizers used to promote crop growth, and livestock that deposit manure directly on the ground surface. Evidence for ongoing denitrification in groundwaters of the study area is supported by an enrichment in both 15N and 18O in the remaining NO3, although isotopic mass balances between the measured and the theoretical δ18ONO3 values also suggest the occurrence of nitrification. The simultaneous occurrence of these biogeochemical processes with heterogeneous distribution across the study area reflect the complexity of interactions within the investigated coastal aquifer. The multiple isotopic tracer approach used here can identify the effect of multiple NO3 anthropogenic activities in coastal environments, which is fundamental for sustainable groundwater resources management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ boumaiza_nitrate_2023 Serial 170  
Permanent link to this record
 

 
Author Dąbrowska, J.; Orellana, A.E.M.; Kilian, W.; Moryl, A.; Cielecka, N.; Michałowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Włóka, A. url  openurl
  Title Between flood and drought: How cities are facing water surplus and scarcity Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume (down) 345 Issue Pages 118557  
  Keywords Urban ecosystem management, Urban floods, Urban droughts, Nature-based solutions, Climate change, Urban resilience  
  Abstract Droughts and floods are weather-related hazards affecting cities in all climate zones and causing human deaths and material losses on all inhabited continents. The aim of this article is to review, analyse and discuss in detail the problems faced by urban ecosystems due to water surplus and scarcity, as well as the need of adaptation to climate change taking into account the legislation, current challenges and knowledge gaps. The literature review indicated that urban floods are much more recognised than urban droughts. Amongst floods, flash floods are currently the most challenging, which by their nature are difficult to monitor. Research and adaptation measures related to water-released hazards use cutting-edge technologies for risk assessment, decision support systems, or early warning systems, among others, but in all areas knowledge gaps for urban droughts are evident. Increasing urban retention and introducing Low Impact Development and Nature-based Solutions is a remedy for both droughts and floods in cities. There is the need to integrate flood and drought disaster risk reduction strategies and creating a holistic approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Dabrowska2023118557 Serial 227  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: