|   | 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C.
Title Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 123 Issue Pages 104780
Keywords Isotope hydrology, Hydrogeochemical modelling, Hydrochemistry, Kargiotis, Troodos
Abstract The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.
Corporate Author Thesis
Publisher Place of Publication Editor
Language english Summary Language english Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0883-2927 ISBN Medium
Area Cyprus Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Christofi2020104780 Serial 76
Permanent link to this record