toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Illgen, M.; Ackermann, H. url  doi
isbn  openurl
  Title Type (up) Book Chapter
  Year 2019 Publication Urban Flood Prevention: Technical and Institutional Aspects from Chinese and German Perspective Abbreviated Journal  
  Volume Issue Pages 173-193  
  Keywords  
  Abstract Today’s cities face the challenge of climate change adaptation worldwide. In this context, prevention of damage caused by flash floods plays an important role. This requires a cooperative pluvial flood risk management approach, which includes planning, technical, and administrative measures and involves preliminary flood risk analyses. This article outlines the main components of this risk management approach, which has proven its effectiveness in Europe. The recommendations formulated for this purpose are applicable or adaptable to regions with other constraints, such as China, for example.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Cham Editor Köster, S.; Reese, M.; Zuo, J.’e  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-01488-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Illgen2019 Serial 87  
Permanent link to this record
 

 
Author Röttcher, K. url  doi
isbn  openurl
  Title Type (up) Book Chapter
  Year 2018 Publication Risikomanagement und Nachhaltigkeit in der Wasserwirtschaft: Erfolgreiche Navigation durch die Komplexität und Dynamik des Risikos Abbreviated Journal  
  Volume Issue Pages 165-174  
  Keywords  
  Abstract Im vorliegenden Beitrag werden beispielhaft unterschiedliche Ansätze des Risikomanagements und das Verständnis von Nachhaltigkeit in der Wasserwirtschaft dargelegt. Die Darstellung richtet sich insbesondere an Leser aus anderen Fachdisziplinen, wie das Rechts- und Finanzwesen, den Fahrzeug- und Maschinenbau oder auch die sozialen Berufe. Die Zusammenhänge werden überblicksartig mit einzelnen konkreten Beispielen dargestellt mit dem Fokus auf die grundsätzlichen Denk- und Vorgehensweisen.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Fachmedien Wiesbaden Place of Publication Wiesbaden Editor Michalke, A.; Rambke, M.; Zeranski, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-658-19684-4 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Röttcher2018 Serial 90  
Permanent link to this record
 

 
Author Puri, S. url  isbn
openurl 
  Title Chapter 9 – Transboundary aquifers: a shared subsurface asset, in urgent need of sound governance Type (up) Book Chapter
  Year 2021 Publication Global Groundwater Abbreviated Journal  
  Volume Issue Pages 113-128  
  Keywords ILC Draft Articles, impact on GDP, sound governance, Transboundary aquifers  
  Abstract Apart from some notable exceptions, the sound governance of transboundary aquifers (coupled or uncoupled to rivers) is seriously lacking in most regions of the world, despite a highly successful 20-year ISARM initiative. The distinction between regions of water abundance (as in the Haute Savoie–Geneva aquifers) and those of water scarcity (\textless1000 m3/an/capita), as in the Rum-Saq aquifer, ought to be a driver for the urgency in adopting sound governance. In the latter regions, however, such an urgent response faces too many hurdles (institutional, financial, and weak capacity). Climate change, one of the global megatrends (among demography, economic shift, resources stress, urbanization, and novel viruses such as COVID-19), will exacerbate the problem in the coming decade and beyond. This chapter provides an critical perspective on the status of this subsurface asset in 570 or so, domestic and transboundary aquifers of the world (self-identified by country experts), while taking full account of their interconnections, or not, with surface waters. This critical perspective will be grounded in two important factors, first the hiatus in adoption by countries of the evolving international water law and guidance on transboundary aquifers (the Draft Articles, which provide legal pathways for collaboration or eventually dispute resolution), and second the framework of the sustainable development goals (SDG) 6 (clean water and sanitation), which countries have committed themselves to with reference to transboundary waters. The critical perspective finds that despite the lack of momentum in adopting formal global norms, sporadic cooperation and collaboration is continuing and is well received, when delivered methodically through the support of international agencies. The findings of the critical perspective are that even if water-related SDGs will have been achieved across the world, it would contribute precious little to meaningful enhancement of governance of transboundary aquifers, unless they have been explicitly addressed in terms that are tangible to decision makers, such as the impact of disregarding them on the current or future national GDP. The onset of a “new socioeconomic normal” in the aftermath of COVID-19 could further defer meaningful progress, taking the example of Latin America, where a 5% decline has been forecast for 2020. With such declines in the finances of governments, attention to shared aquifer resources may well decline even further. Urgent wise reaction to this possibility must be a priority for the professional science-policy community.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Mukherjee, A.; Scanlon, B.R.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-818172-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mukherjee_chapter_2021 Serial 106  
Permanent link to this record
 

 
Author Tanwer, N.; Arora, V.; Kant, K.; Singh, B.; Laura, J.S.; Khosla, B. url  isbn
openurl 
  Title Chapter 17 – Prevalence of Uranium in groundwater of rural and urban regions of India Type (up) Book Chapter
  Year 2024 Publication Water Resources Management for Rural Development Abbreviated Journal  
  Volume Issue Pages 213-234  
  Keywords Distribution, Heath impacts, Remediation techniques, Sources, Uranium  
  Abstract Abnormally high uranium (U) prevalence in groundwater is a neoteric subject of concern throughout the world because of its direct impact on human health and well-being. Groundwater is used as the most preferred choice for drinking because of its good quality and ease of availability in rural and urban parts of India, and also in different parts of the world. India is an agriculture-dominant country and its 50–80% irrigational requirement is met by groundwater, besides this nearly 90% of rural and 50% of urban water needs are fulfilled by groundwater. The uranium concentration in groundwater in different parts of India namely Punjab, Haryana, Rajasthan, Madhya Pradesh, Karnataka, etc. found to be varying from 0 mg/L to 1443 mg/L, and in different parts of the world, it is found up to 1400 mg/L in the countries like United States, Canada, Finland, Mongolia, Nigeria, South Korea, Pakistan, Burundi, China, Afghanistan, etc. Various natural factors such as geology, hydro-geochemistry, and prevailing conditions as well as anthropogenic factors including mining, nuclear activities, erratic use of fertilizers, and overexploitation of groundwater resources are responsible for adding uranium in groundwater. Groundwater is considered a primary source of uranium ingestion in human beings as it contributes 85% while food contributes 15%. Uranium affects living beings as a two-way sword, being a radioactive element, causing radiotoxicity, and on the other hand as a heavy metal, it causes chemotoxicity. The main target organs affected by the consumption of uranium-contaminated water are kidneys, bones, lungs, etc. It can cause renal failure, impair cell functioning and bone growth, and mutation in DNA. Although, its toxic effects, being a heavy metal, are more severe than its radiotoxicity. Various techniques are available for the efficient removal of uranium from the groundwater such as bioremediation, nanotechnology-enhanced remediation, adsorption, filtration, etc. This chapter entails a comprehensive investigation of uranium contamination in groundwater of rural and urban parts of India their probable sources, health impacts, treatment, and mitigation techniques available to manage groundwater resources.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Madhav, S.; Srivastav, A.L.; Izah, S.C.; Hullebusch, E. van  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-443-18778-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ madhav_chapter_2024 Serial 152  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type (up) Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225  
Permanent link to this record
 

 
Author Pisa, P.F.; Nehren, U.; Sebesvari, Z.; Rai, S.; Wong, I. url  isbn
openurl 
  Title Chapter 17 – Nature-based solutions to reduce risks and build resilience in mountain regions Type (up) Book Chapter
  Year 2024 Publication Safeguarding Mountain Social-Ecological Systems Abbreviated Journal  
  Volume Issue Pages 115-126  
  Keywords Nature-based solutions, mountains, climate change adaptation, disaster risk reduction, ecosystem services, SDGs  
  Abstract Nature-based solutions (NbS) are increasingly recognized as effective environmental-management measures to address societal challenges such as climate change, water and food security, and disaster risk reduction, thus contributing to human well-being and protecting biodiversity. In addition to being particularly susceptible to these challenges, mountain areas are prone to multihazard conditions, due to their steep topography and particular climatic conditions. NbS can contribute greatly to the sustainable development of mountain ecosystems. This chapter presents examples of NbS in mountain areas around the globe that demonstrate how this approach contributes to achieving sustainable development.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Schneiderbauer, S.; Pisa, P.F.; Shroder, J.F.; Szarzynski, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-822095-5 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Fontanellapisa2024115 Serial 263  
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type (up) Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265  
Permanent link to this record
 

 
Author Severi, A.; Masoudian, M.; Kordi, E.; Roettcher, K. url  doi
openurl 
  Title Discharge coefficient of combined-free over-under flow on a cylindrical weir-gate Type (up) Journal Article
  Year 2015 Publication ISH Journal of Hydraulic Engineering Abbreviated Journal  
  Volume 21 Issue 1 Pages 42-52  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ doi:10.1080/09715010.2014.939503 Serial 88  
Permanent link to this record
 

 
Author de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N. url  openurl
  Title Improving agricultural water productivity with a focus on rural transformation* Type (up) Journal Article
  Year 2021 Publication Irrigation and Drainage Abbreviated Journal  
  Volume 70 Issue 3 Pages 458-469  
  Keywords irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale  
  Abstract ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89  
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M. url  openurl
  Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type (up) Journal Article
  Year 2014 Publication Journal of Arid Environments Abbreviated Journal  
  Volume 105 Issue Pages 41-51  
  Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge  
  Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ stone_naturally-high_2014 Serial 91  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: