toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F. url  openurl
  Title Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
  Year 2021 Publication Advances in Water Resources Abbreviated Journal  
  Volume 149 Issue Pages 103849  
  Keywords (down) Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty  
  Abstract Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0309-1708 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220  
Permanent link to this record
 

 
Author Sardo, M.S.; Jalalkamali, N. url  openurl
  Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
  Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 17 Issue Pages 100754  
  Keywords (down) System dynamics, Water resources management, Vensim, Management scenarios  
  Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266  
Permanent link to this record
 

 
Author Kharazi, P.; khazaeli, E.A.; Heshmatpour, A. url  openurl
  Title Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method Type Journal Article
  Year 2021 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 15 Issue Pages 100657  
  Keywords (down) Subsurface dam, Hybrid decision-making method, Geographic information system, Analytical hierarchy process, EDAS, TOPSIS1  
  Abstract Competing commercial demands on water resources need to be balanced as the world’s population rises. Generally, groundwater is raised by subsurface dams. In this paper, the geographic information system (GIS) software and a decision-making method were applied. As the first step, the limitations that affect the establishment of the subsurface dam were identified using eliminating criteria by the Boolean logic. Regarding the second step, the most appropriate axis was determined for subsurface dam construction in each of the limits. The analytical hierarchy process (AHP) was applied according to the evaluation criteria in this study. The aim of using AHP was to weigh and prioritize the criteria of the groundwater dam for recognizing appropriate sites. Among various places and regarding the subsurface dam construction, AHP was conducted using a hierarchy process for finding the most suitable sites in the third stage of the decision-making method. Finally, among the ten appropriate sites, cross comparison was drawn by using Decision Expert (DEX), Evaluation based on Distance from Average Solution (EDAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Compared together (as a process of decision-making), DEX, TOPSIS, and EDAS methods assisted in ranking the most appropriate sites in the final step of subsurface dam pre-selection. A and C axes obtained scores between 1 and 2, among 10 axes according to the numerically ranked locations. Regarding the water shortage issue and better management of the underground water at certain levels, the findings of this study could be useful for the residents of Kajbid-Balaqly Watershed in the dry season. Further, water managers can use the above-mentioned methods for their decisions regarding the proper subsurface dam establishment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kharazi2021100657 Serial 250  
Permanent link to this record
 

 
Author Hdeib, R.; Aouad, M. url  openurl
  Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
  Year 2023 Publication Water Science and Engineering Abbreviated Journal  
  Volume 16 Issue 3 Pages 219-225  
  Keywords (down) Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas  
  Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242  
Permanent link to this record
 

 
Author Netzer, L.; Kurtzman, D.; Ben-Hur, M.; Livshitz, Y.; Katzir, R.; Nachshon, U. url  openurl
  Title Novel approach to roof rainwater harvesting and aquifer recharge in an urban environment: Dry and wet infiltration wells comparison Type Journal Article
  Year 2024 Publication Water Research Abbreviated Journal  
  Volume 252 Issue Pages 121183  
  Keywords (down) Rainwater harvesting, Managed aquifer recharge, Urban hydrology, Infiltration wells  
  Abstract In urban environments there is a severe reduction of infiltration and groundwater recharge due to the existence of large impervious areas. During rain events, large volumes of water that could have recharged groundwater and surface water bodies are diverted into the municipal drainage system and lost from the freshwater storage. Moreover, extreme rain events impose high peak flows and large runoff volumes, which increase the risk of urban floods. Recent studies have suggested the use of rainwater harvesting for groundwater recharge, as a plausible solution for these challenges in dense urban environments. While the benefits of this approach are well understood, research on its practical, engineering, and hydrological aspects is relatively limited. The objective of the present study was to examine the use of infiltration wells for groundwater recharge with harvested rainwater collected from building rooftops under Mediterranean climate conditions. Two types of wells with similar hydraulic and technical properties were examined: a well that reaches the groundwater (wet well); and a well that discharges the harvested water into the unsaturated zone (dry well). Infiltration capacities of the wells were compared in controlled experiments conducted during summer months, and in operational recharge of harvested rainwater, during winter. Both dry and wet wells were found to be suitable for purposes of groundwater recharge with rooftop-harvested rainwater. Infiltration capacity of the wet well was about seven times greater than the infiltration capacity of the dry well. While the infiltration capacity of the wet well was constant throughout the entire length of the study (∼10 m3/h/m), the dry well infiltration capacity improved during winter (from 0.5 m3/h/m to 1.5 m3/h/m), a result of development of the dry well with time. Considering Tel-Aviv, Israel, as a case study for a dense modern city in a Mediterranean climate, it is demonstrated herein that the use of infiltration wells may reduce urban drainage by ∼40 %.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Netzer2024121183 Serial 230  
Permanent link to this record
 

 
Author Soh, Q.Y.; O’Dwyer, E.; Acha, S.; Shah, N. url  openurl
  Title Robust optimisation of combined rainwater harvesting and flood mitigation systems Type Journal Article
  Year 2023 Publication Water Research Abbreviated Journal  
  Volume 245 Issue Pages 120532  
  Keywords (down) Rainwater harvesting, Flood mitigation, Robust stochastic optimisation, Sustainable environmental engineering, Decision tool, Urban residential estates  
  Abstract Combined large-scale rainwater harvesting (RWH) and flood mitigation systems are promising as a sustainable water management strategy in urban areas. These are multi-purpose infrastructure that not only provide a secondary, localised water resource, but can also reduce discharge and hence loads on any downstream wastewater networks if these are integrated into the wider water network. However, the performance of these systems is dependent on the specific design used for its local catchment which can vary significantly between different implementations. A multitude of design strategies exist, however there is no universally accepted standard framework. To tackle these issues, this paper presents a two-player optimisation framework which utilises a stochastic design optimisation model and a competing, high-intensity rainfall design model to optimise passively-operated RWH systems. A customisable tool set is provided, under which optimisation models specific to a given catchment can be built quickly. This reduces the barriers to implementing computationally complex sizing strategies and encouraging more resource-efficient systems to be built. The framework was applied to a densely populated high-rise residential estate, eliminating overflow events from historical rainfall. The optimised configuration resulted in a 32% increase in harvested water yield, but its ability to meet irrigation demands was limited by the operational levels of the treatment pump. Hence, with the inclusion of operational levels in the optimisation model, the framework can provide an efficient large-scale RWH system that is capable of simultaneously meeting water demands and reducing stresses within and beyond its local catchment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Soh2023120532 Serial 243  
Permanent link to this record
 

 
Author Jamali, B.; Bach, P.M.; Deletic, A. url  openurl
  Title Rainwater harvesting for urban flood management – An integrated modelling framework Type Journal Article
  Year 2020 Publication Water Research Abbreviated Journal  
  Volume 171 Issue Pages 115372  
  Keywords (down) Rainwater harvesting tanks, Urban flood simulation, Rapid flood inundation model, Urban flood risk mitigation  
  Abstract It is well known that rainwater harvesting (RWH) can augment water supply and reduce stormwater pollutant discharges. Due to the lack of continuous 2D modelling of urban flood coverage and its associated damage, the ability of RWH to reduce urban flood risks has not been fully evaluated. Literature suggests that small distributed storage spaces using RWH tanks will reduce flood damage only during small to medium flooding events and therefore cumulative assessment of their benefits is needed. In this study we developed a new integrated modelling framework that implements a semi-continuous simulation approach to investigate flood prevention and water supply benefits of RWH tanks. The framework includes a continuous mass balance simulation model that considers antecedent rainfall conditions and water demand/usage of tanks and predicts the available storage prior to each storm event. To do so, this model couples a rainfall-runoff tank storage model with a detailed stochastic end-use water demand model. The available storage capacity of tanks is then used as a boundary condition for the novel rapid flood simulation model. This flood model was developed by coupling the U.S. EPA Storm Water Management Model (SWMM) to the Cellular-Automata Fast Flood Evaluation (CA-ffé) model to predict the inundation depth caused by surcharges over the capacity of the drainage network. The stage-depth damage curves method was used to calculate time series of flood damage, which are then directly used for flood risk and cost-benefit analysis. The model was tested through a case study in Melbourne, using a recorded rainfall time series of 85 years (after validating the flood model against 1D-2D MIKE-FLOOD). Results showed that extensive implementation of RWH tanks in the study area is economically feasible and can reduce expected annual damage in the catchment by up to approximately 30 percent. Availability of storage space and temporal distribution of rainfall within an event were important factors affecting tank performance for flood reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jamali2020115372 Serial 239  
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K. url  openurl
  Title Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
  Year 2020 Publication Water Science and Engineering Abbreviated Journal  
  Volume 13 Issue 2 Pages 95-105  
  Keywords (down) Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth  
  Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Akter202095 Serial 247  
Permanent link to this record
 

 
Author Puri, S. url  isbn
openurl 
  Title Chapter 9 – Transboundary aquifers: a shared subsurface asset, in urgent need of sound governance Type Book Chapter
  Year 2021 Publication Global Groundwater Abbreviated Journal  
  Volume Issue Pages 113-128  
  Keywords (down) ILC Draft Articles, impact on GDP, sound governance, Transboundary aquifers  
  Abstract Apart from some notable exceptions, the sound governance of transboundary aquifers (coupled or uncoupled to rivers) is seriously lacking in most regions of the world, despite a highly successful 20-year ISARM initiative. The distinction between regions of water abundance (as in the Haute Savoie–Geneva aquifers) and those of water scarcity (\textless1000 m3/an/capita), as in the Rum-Saq aquifer, ought to be a driver for the urgency in adopting sound governance. In the latter regions, however, such an urgent response faces too many hurdles (institutional, financial, and weak capacity). Climate change, one of the global megatrends (among demography, economic shift, resources stress, urbanization, and novel viruses such as COVID-19), will exacerbate the problem in the coming decade and beyond. This chapter provides an critical perspective on the status of this subsurface asset in 570 or so, domestic and transboundary aquifers of the world (self-identified by country experts), while taking full account of their interconnections, or not, with surface waters. This critical perspective will be grounded in two important factors, first the hiatus in adoption by countries of the evolving international water law and guidance on transboundary aquifers (the Draft Articles, which provide legal pathways for collaboration or eventually dispute resolution), and second the framework of the sustainable development goals (SDG) 6 (clean water and sanitation), which countries have committed themselves to with reference to transboundary waters. The critical perspective finds that despite the lack of momentum in adopting formal global norms, sporadic cooperation and collaboration is continuing and is well received, when delivered methodically through the support of international agencies. The findings of the critical perspective are that even if water-related SDGs will have been achieved across the world, it would contribute precious little to meaningful enhancement of governance of transboundary aquifers, unless they have been explicitly addressed in terms that are tangible to decision makers, such as the impact of disregarding them on the current or future national GDP. The onset of a “new socioeconomic normal” in the aftermath of COVID-19 could further defer meaningful progress, taking the example of Latin America, where a 5% decline has been forecast for 2020. With such declines in the finances of governments, attention to shared aquifer resources may well decline even further. Urgent wise reaction to this possibility must be a priority for the professional science-policy community.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Mukherjee, A.; Scanlon, B.R.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-818172-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mukherjee_chapter_2021 Serial 106  
Permanent link to this record
 

 
Author Patel, D.; Pamidimukkala, P.; Chakraborty, D. url  openurl
  Title Groundwater quality evaluation of Narmada district, Gujarat using principal component analysis Type Journal Article
  Year 2024 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 24 Issue Pages 101050  
  Keywords (down) Fluoride, Groundwater quality index, Principal component analysis, Uranium  
  Abstract In the present study, the ground water quality parameters were monitored during pre- and post-monsoon seasons across Narmada district, Gujarat, India. Monitoring was done in 89 drinking water samples collected by grid sampling method from the study area. Uranium and fluoride were analyzed along with associated parameters such as pH, dissolved oxygen, Cl−, NO3−, F−, SO42−, total alkalinity, total dissolved solids and hardness. In 4% samples the fluoride content was found to be above WHO permissible limits of 1.5 mg/L (2.36 mg/L in Undaimandava, 1.55 mg/L in Shira, 3.04 mg/L in Fatehpur and 1.83 mg/L in Dholivav) during pre-monsoon season (PRM) and 4.74 mg/L, 2.41 mg/L, 2.34 mg/L and 3.99 mg/L respectively in Bantawadi, Shira, Undai Mandava and Fatepur villages during post-monsoon (POM). The uranium level was within WHO limits in both POM and PRM seasons. The quality of the water was evaluated by Principal Component and Pearson Correlation statistical analysis techniques. The PRM and POM correlation study indicated a strong correlation of TDS with EC, Chloride, total alkalinity and bicarbonate and U while moderately strong correlation of TDS with fluoride were observed indicating that chloride, total alkalinity, bicarbonate, U and fluoride contributed to TDS and EC. Principal component analysis was applied for 14 variables, from which 3 factors were extracted during PRM and POM seasons. The extracted components, contributed 84.391% and 83.315%, to variation during PRM and POM seasons respectively. The study indicated that the analyzed water samples in Narmada district were safe for drinking purpose. However, Tilakwada tehsil groundwater was observed to be unsustainable for drinking, without further water treatment, but was appropriate for agricultural purposes. The study will help the residents of the district to understand the present water quality status and will also help in future management to protect the ground water of Narmada district.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ patel_groundwater_2024 Serial 148  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: