toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sardo, M.S.; Jalalkamali, N. url  openurl
  Title (up) A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
  Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 17 Issue Pages 100754  
  Keywords System dynamics, Water resources management, Vensim, Management scenarios  
  Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266  
Permanent link to this record
 

 
Author Tariq, A.; Beni, L.H.; Ali, S.; Adnan, S.; Hatamleh, W.A. url  openurl
  Title (up) An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100998  
  Keywords Flood hydrology, AHP, Flood susceptibility, FR, Unit stream power, GIS  
  Abstract Floods are one of the most common natural disasters, resulting in the extensive destruction of infrastructure, property, and human life. The destructive potential of a flood depends on numerous factors, including the size of the flood, the rate of flooding, the time it takes for the water to move through a given area, the river’s planform and cross-section geometry, and other similar factors. The present study is a unique analysis of flood mapping that was accomplished with the help of the Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and hydrogeomorphic response to floods by integrating geospatial analysis and unit stream power modeling. The Indus catchment region of Pakistan is where the subject topic is put into practice. According to the hydrologic analysis of the yearly peak discharge, the hydro-station in Gilgit-Baltistan can move boulders measuring up to 0.5 m in height during significant flooding. On the other hand, there will be no change to the geometry of the cross-section throughout 1980–2020 in Gilgit-Baltistan. The flood susceptibility map is constructed using data from twelve influencing parameters, including elevation, proximity to the drainage network, slope, drainage density, geomorphology, rainfall, the curvature of the topography, flow accumulation, geology, land use, Topographic Wetness Index (TWI), and Stream Power Index (SPI). The area under the curve (AUC) approach, which demonstrates a substantial degree of accuracy (85% and 83%), is utilized to evaluate the effectiveness of the AHP and FR. The current study fills the gaps between the geospatial approach and the hydrogeomorphic assessment of flood to determine flood susceptibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tariq2023100998 Serial 234  
Permanent link to this record
 

 
Author Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F. url  openurl
  Title (up) Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
  Year 2021 Publication Advances in Water Resources Abbreviated Journal  
  Volume 149 Issue Pages 103849  
  Keywords Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty  
  Abstract Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0309-1708 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220  
Permanent link to this record
 

 
Author Tanwer, N.; Arora, V.; Kant, K.; Singh, B.; Laura, J.S.; Khosla, B. url  isbn
openurl 
  Title (up) Chapter 17 – Prevalence of Uranium in groundwater of rural and urban regions of India Type Book Chapter
  Year 2024 Publication Water Resources Management for Rural Development Abbreviated Journal  
  Volume Issue Pages 213-234  
  Keywords Distribution, Heath impacts, Remediation techniques, Sources, Uranium  
  Abstract Abnormally high uranium (U) prevalence in groundwater is a neoteric subject of concern throughout the world because of its direct impact on human health and well-being. Groundwater is used as the most preferred choice for drinking because of its good quality and ease of availability in rural and urban parts of India, and also in different parts of the world. India is an agriculture-dominant country and its 50–80% irrigational requirement is met by groundwater, besides this nearly 90% of rural and 50% of urban water needs are fulfilled by groundwater. The uranium concentration in groundwater in different parts of India namely Punjab, Haryana, Rajasthan, Madhya Pradesh, Karnataka, etc. found to be varying from 0 mg/L to 1443 mg/L, and in different parts of the world, it is found up to 1400 mg/L in the countries like United States, Canada, Finland, Mongolia, Nigeria, South Korea, Pakistan, Burundi, China, Afghanistan, etc. Various natural factors such as geology, hydro-geochemistry, and prevailing conditions as well as anthropogenic factors including mining, nuclear activities, erratic use of fertilizers, and overexploitation of groundwater resources are responsible for adding uranium in groundwater. Groundwater is considered a primary source of uranium ingestion in human beings as it contributes 85% while food contributes 15%. Uranium affects living beings as a two-way sword, being a radioactive element, causing radiotoxicity, and on the other hand as a heavy metal, it causes chemotoxicity. The main target organs affected by the consumption of uranium-contaminated water are kidneys, bones, lungs, etc. It can cause renal failure, impair cell functioning and bone growth, and mutation in DNA. Although, its toxic effects, being a heavy metal, are more severe than its radiotoxicity. Various techniques are available for the efficient removal of uranium from the groundwater such as bioremediation, nanotechnology-enhanced remediation, adsorption, filtration, etc. This chapter entails a comprehensive investigation of uranium contamination in groundwater of rural and urban parts of India their probable sources, health impacts, treatment, and mitigation techniques available to manage groundwater resources.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Madhav, S.; Srivastav, A.L.; Izah, S.C.; Hullebusch, E. van  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-443-18778-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ madhav_chapter_2024 Serial 152  
Permanent link to this record
 

 
Author Puri, S. url  isbn
openurl 
  Title (up) Chapter 9 – Transboundary aquifers: a shared subsurface asset, in urgent need of sound governance Type Book Chapter
  Year 2021 Publication Global Groundwater Abbreviated Journal  
  Volume Issue Pages 113-128  
  Keywords ILC Draft Articles, impact on GDP, sound governance, Transboundary aquifers  
  Abstract Apart from some notable exceptions, the sound governance of transboundary aquifers (coupled or uncoupled to rivers) is seriously lacking in most regions of the world, despite a highly successful 20-year ISARM initiative. The distinction between regions of water abundance (as in the Haute Savoie–Geneva aquifers) and those of water scarcity (\textless1000 m3/an/capita), as in the Rum-Saq aquifer, ought to be a driver for the urgency in adopting sound governance. In the latter regions, however, such an urgent response faces too many hurdles (institutional, financial, and weak capacity). Climate change, one of the global megatrends (among demography, economic shift, resources stress, urbanization, and novel viruses such as COVID-19), will exacerbate the problem in the coming decade and beyond. This chapter provides an critical perspective on the status of this subsurface asset in 570 or so, domestic and transboundary aquifers of the world (self-identified by country experts), while taking full account of their interconnections, or not, with surface waters. This critical perspective will be grounded in two important factors, first the hiatus in adoption by countries of the evolving international water law and guidance on transboundary aquifers (the Draft Articles, which provide legal pathways for collaboration or eventually dispute resolution), and second the framework of the sustainable development goals (SDG) 6 (clean water and sanitation), which countries have committed themselves to with reference to transboundary waters. The critical perspective finds that despite the lack of momentum in adopting formal global norms, sporadic cooperation and collaboration is continuing and is well received, when delivered methodically through the support of international agencies. The findings of the critical perspective are that even if water-related SDGs will have been achieved across the world, it would contribute precious little to meaningful enhancement of governance of transboundary aquifers, unless they have been explicitly addressed in terms that are tangible to decision makers, such as the impact of disregarding them on the current or future national GDP. The onset of a “new socioeconomic normal” in the aftermath of COVID-19 could further defer meaningful progress, taking the example of Latin America, where a 5% decline has been forecast for 2020. With such declines in the finances of governments, attention to shared aquifer resources may well decline even further. Urgent wise reaction to this possibility must be a priority for the professional science-policy community.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor Mukherjee, A.; Scanlon, B.R.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-12-818172-0 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mukherjee_chapter_2021 Serial 106  
Permanent link to this record
 

 
Author Pham, Q.-N.; Nguyen, T.-C.; Ta, T.-T.; Tran, T.-L. url  openurl
  Title (up) Comprehensive approach to sustainable groundwater management in semi-arid Ninh Thuan plain, Vietnam Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 101031  
  Keywords Climate change, Groundwater, Managed aquifer recharge (MAR), Modeling, Sea level rise, Seawater intrusion, Sustainable groundwater management  
  Abstract Vietnam is a country with a long coastline and a high population density residing in the coastal plains. The largest dry area in Vietnam, the coastal plain of Ninh Thuan province, always lacks water in the first dry months of the year (Jan., Feb., Mar., and Apr.). Groundwater is an extremely valuable resource for supplies at this time. Therefore, the objective of this study is to establish a comprehensive approach to sustainable groundwater management in this semi-arid region. This approach is not only mitigating the negative impacts of factors such as climate change, sea level rise, and socio-economic development but also suggesting measures for management of aquifer recharge. A groundwater model for a 3-layer system with variable density flow SEAWAT is built to predict the impacts of climate change and sea level rise without a change in groundwater abstraction. This model helps to understand the trend of salt intrusion and lowering groundwater level in the study area. Afterwards, scenarios with different ground water abstraction and groundwater development such as ground dam, infiltration basin have been set up to meet the demands of socio-economic development in the future. Predicted results will show the impacts of the groundwater systems in the area such as groundwater level change, and saltwater intrusion. Controlled groundwater abstraction and some measures of groundwater development such as infiltration basin, underground dam would allow for an increase of up to 50000m3/day in the year 2050 without negative impacts on the aquifer system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pham_comprehensive_2023 Serial 174  
Permanent link to this record
 

 
Author Kharazi, P.; khazaeli, E.A.; Heshmatpour, A. url  openurl
  Title (up) Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method Type Journal Article
  Year 2021 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 15 Issue Pages 100657  
  Keywords Subsurface dam, Hybrid decision-making method, Geographic information system, Analytical hierarchy process, EDAS, TOPSIS1  
  Abstract Competing commercial demands on water resources need to be balanced as the world’s population rises. Generally, groundwater is raised by subsurface dams. In this paper, the geographic information system (GIS) software and a decision-making method were applied. As the first step, the limitations that affect the establishment of the subsurface dam were identified using eliminating criteria by the Boolean logic. Regarding the second step, the most appropriate axis was determined for subsurface dam construction in each of the limits. The analytical hierarchy process (AHP) was applied according to the evaluation criteria in this study. The aim of using AHP was to weigh and prioritize the criteria of the groundwater dam for recognizing appropriate sites. Among various places and regarding the subsurface dam construction, AHP was conducted using a hierarchy process for finding the most suitable sites in the third stage of the decision-making method. Finally, among the ten appropriate sites, cross comparison was drawn by using Decision Expert (DEX), Evaluation based on Distance from Average Solution (EDAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Compared together (as a process of decision-making), DEX, TOPSIS, and EDAS methods assisted in ranking the most appropriate sites in the final step of subsurface dam pre-selection. A and C axes obtained scores between 1 and 2, among 10 axes according to the numerically ranked locations. Regarding the water shortage issue and better management of the underground water at certain levels, the findings of this study could be useful for the residents of Kajbid-Balaqly Watershed in the dry season. Further, water managers can use the above-mentioned methods for their decisions regarding the proper subsurface dam establishment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kharazi2021100657 Serial 250  
Permanent link to this record
 

 
Author Dahan, O.; Tatarsky, B.; Enzel, Y.; Külls, C.; Seely, M.; Benito, G. url  doi
openurl 
  Title (up) Dynamics of flood water infiltration and ground water recharge in hyperarid desert Type Journal Article
  Year 2008 Publication Groundwater Abbreviated Journal  
  Volume 46 Issue 3 Pages 450-461  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Inc Malden, USA Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Dahan2008dynamics Serial 27  
Permanent link to this record
 

 
Author Klock, H.; Külls, C.; Udluft, P. openurl 
  Title (up) Estimating recharge values using hydrochemical and geological data: a case study from the Type Conference Article
  Year 2001 Publication Impact of Human Activity on Groundwater Dynamics: Proceedings of an International Symposium (Symposium S3) Held During the Sixth Scientific Assembly of the International Association of Hydrological Sciences (IAHS) at Maastricht, The Netherlands, from 18 t Abbreviated Journal  
  Volume Issue 269 Pages 25  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Assn of Hydrological Sciences  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Klock2001estimating Serial 60  
Permanent link to this record
 

 
Author Patel, D.; Pamidimukkala, P.; Chakraborty, D. url  openurl
  Title (up) Groundwater quality evaluation of Narmada district, Gujarat using principal component analysis Type Journal Article
  Year 2024 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 24 Issue Pages 101050  
  Keywords Fluoride, Groundwater quality index, Principal component analysis, Uranium  
  Abstract In the present study, the ground water quality parameters were monitored during pre- and post-monsoon seasons across Narmada district, Gujarat, India. Monitoring was done in 89 drinking water samples collected by grid sampling method from the study area. Uranium and fluoride were analyzed along with associated parameters such as pH, dissolved oxygen, Cl−, NO3−, F−, SO42−, total alkalinity, total dissolved solids and hardness. In 4% samples the fluoride content was found to be above WHO permissible limits of 1.5 mg/L (2.36 mg/L in Undaimandava, 1.55 mg/L in Shira, 3.04 mg/L in Fatehpur and 1.83 mg/L in Dholivav) during pre-monsoon season (PRM) and 4.74 mg/L, 2.41 mg/L, 2.34 mg/L and 3.99 mg/L respectively in Bantawadi, Shira, Undai Mandava and Fatepur villages during post-monsoon (POM). The uranium level was within WHO limits in both POM and PRM seasons. The quality of the water was evaluated by Principal Component and Pearson Correlation statistical analysis techniques. The PRM and POM correlation study indicated a strong correlation of TDS with EC, Chloride, total alkalinity and bicarbonate and U while moderately strong correlation of TDS with fluoride were observed indicating that chloride, total alkalinity, bicarbonate, U and fluoride contributed to TDS and EC. Principal component analysis was applied for 14 variables, from which 3 factors were extracted during PRM and POM seasons. The extracted components, contributed 84.391% and 83.315%, to variation during PRM and POM seasons respectively. The study indicated that the analyzed water samples in Narmada district were safe for drinking purpose. However, Tilakwada tehsil groundwater was observed to be unsustainable for drinking, without further water treatment, but was appropriate for agricultural purposes. The study will help the residents of the district to understand the present water quality status and will also help in future management to protect the ground water of Narmada district.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ patel_groundwater_2024 Serial 148  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: