|   | 
Details
   web
Records
Author Sardo, M.S.; Jalalkamali, N.
Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 17 Issue Pages 100754
Keywords System dynamics, Water resources management, Vensim, Management scenarios
Abstract (down) With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266
Permanent link to this record
 

 
Author Love, A.J.; Shand, P.; Karlstrom, K.; Crossey, L.; Rousseau-Gueutin, P.; Priestley, S.; Wholing, D.; Fulton, S.; Keppel, M.
Title Geochemistry and Travertine Dating Provide New Insights into the Hydrogeology of the Great Artesian Basin, South Australia Type Journal Article
Year 2013 Publication Procedia Earth and Planetary Science Abbreviated Journal
Volume 7 Issue Pages 521-524
Keywords GAB springs, Great Artesian Basin, Helium isotope data, Uranium series dating
Abstract (down) While of great national and societal significance, and importance in its own right, the Great Artesian Basin of Australia is an iconic example of a continental scale artesian groundwater system. New geochemical, hydrological, and neo-tectonic data suggests that existing models that involve recharge in eastern Australia, relatively simple flowpaths and discharge in springs in the western margin require modification. New geochemical data indicate a small volume flux of deeply derived (endogenic) fluids mixing into the aquifer system at a continental scale. Neo- tectonic data indicates active tectonism today that provides a fluid pathway through faults for the deeply sourced endogenic fluids to discharge in GAB travertine depositing springs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1878-5220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ love_geochemistry_2013 Serial 122
Permanent link to this record
 

 
Author Petisco-Ferrero, S.; Idoeta, R.; Rozas, S.; Olondo, C.; Herranz, M.
Title Radiological environmental monitoring of groundwater around NPP: A proposal for its assessment Type Journal Article
Year 2023 Publication Heliyon Abbreviated Journal
Volume 9 Issue 9 Pages 19470
Keywords Detection limit, Nuclear power plant dismantling and decommissioning, Radiological environmental monitoring, Radionuclides in groundwater
Abstract (down) Whether a nuclear installation has radiological impact and, in that case, its extension, are the questions behind any environmental analysis of the installation along its operational life. This analysis is based on the detailed establishment of the radiological background of the area. Accordingly, the dismantling and decommissioning process (D&D) of a nuclear power plant starts with a radiological monitoring plan, which includes the radiological characterization of the area and of its surroundings. At the completion of the D&D, unrestricted use for the site will be permitted strictly in accordance with results of the radiological survey within the limits established by the local authorities. Groundwater quality is typically included in any radiological analysis since, among other reasons, a significant part of it is highly likely to end up being extracted for domestic use and hence, human consumption. While there is no regulation containing maximum activity concentration or radionuclide guidance values for water that may be destined for uses other than public consumption, if groundwater is considered a “part” of the land, dose criteria for site release can be applied. Therefore, together with the guidance levels to be established for the different radionuclides expected in the groundwater, the detection limits to be employed when performing routine radio analytical characterization procedures in the laboratory should also be provided. In this paper, we first propose a relation of the potential radionuclides to be analyzed in groundwater, together with their detection limits to be achieved when the determinations are performed in a laboratory, and subsequently, we discuss the most suitable analytical methodologies and resources that would be necessary to undertake radiological characterization plans from a practical point of view.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ petisco-ferrero_radiological_2023 Serial 133
Permanent link to this record
 

 
Author Min, M.; Xu, H.; Chen, J.; Fayek, M.
Title Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China Type Journal Article
Year 2005 Publication Ore Geology Reviews Abbreviated Journal
Volume 26 Issue 3 Pages 198-206
Keywords Biomineralization, China, Roll-front uranium deposit, Sandstone
Abstract (down) We show evidence that the primary uranium minerals, uraninite and coffinite, from high-grade ore samples (U3O8\textgreater0.3%) in the Wuyiyi, Wuyier, and Wuyisan sandstone-hosted roll-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically replace fungi and bacteria. Uranium (VI), which was the sole electron acceptor, was likely to have been enzymically reduced. Post-mortem accumulation of uranium may have also occurred through physio-chemical interaction between uranium and negatively-charged cellular sites, and inorganic adsorption or precipitation reactions. These results suggest that microorganisms may have played a key role in formation of the sandstone- or roll-type uranium deposits, which are among the most economically significant uranium deposits in the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ min_evidence_2005 Serial 186
Permanent link to this record
 

 
Author Min, M.; Chen, J.; Wang, J.; Wei, G.; Fayek, M.
Title Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China Type Journal Article
Year 2005 Publication Ore Geology Reviews Abbreviated Journal
Volume 26 Issue 1 Pages 51-69
Keywords China, Mineralogy, Paragenesis, Sandstone-hosted roll-type uranium deposit
Abstract (down) We present a first paragenetic study of the Wuyier, Wuyisan, Wuyiyi and Shihongtan sandstone-hosted roll-front uranium deposits, northwest China. The mineralization is hosted by Lower–Middle Jurassic coarse- to medium-grained sandstones, which are dark-gray to black due to a mixture of ore minerals and carbonaceous debris. The sandstone is alluvial fan-braided river facies. Minerals associated with these deposits can be broadly categorized as detrital, authigenic, and ore-stage mineralization. Ore minerals consist of uraninite and coffinite. This is the first noted occurrence of coffinite in this type of deposit in China. Sulfide minerals associated with the uranium minerals are pyrite, marcasite, and less commonly, sphalerite and galena. The sulfide minerals are largely in textural equilibrium with the uranium minerals. However, these sulfide minerals occasionally appear to predate, as well as postdate, the uranium minerals. This implies that there are multiple generations of sulfides associated with these deposits. The ore minerals occur interstitially between fossilized wood cells in the sandstones as well as replace fossilized wood and biotite. The deposits are generally low-grade. Primary uranium minerals associated with the low-grade deposits are generally too small, ranging from 0.2 to 0.3 μm in diameter, to be observed by optical microscopy and are only observed by electron microscopy. Mineral paragenesis and textures indicate that these deposits formed under low temperature (30–50 °C) conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ min_mineral_2005 Serial 175
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume Issue Pages 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract (down) Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume Issue Pages 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract (down) Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265
Permanent link to this record
 

 
Author Seidl, C.; Wheeler, S.A.; Page, D.
Title Understanding the global success criteria for managed aquifer recharge schemes Type Journal Article
Year 2024 Publication Journal of Hydrology Abbreviated Journal
Volume 628 Issue Pages 130469
Keywords Managed Aquifer Recharge (MAR), Fuzzy-set Qualitative Comparative Analysis, Water banking, Groundwater, Water management, Water storage
Abstract (down) Water availability and quality issues will only gain importance in the future, with climate change impacts putting increasing pressure on global water resources. Dealing with these challenges requires drawing on all available water management tools, including Managed Aquifer Recharge (MAR). Although MAR has seen increasing global implementation during the last half a century, it is still often overlooked as a management tool. While technical, bio-physical, and hydrogeological aspects of MAR are well researched, this cannot be said for socio-economic and other governance factors. Where information is available, this study seeks to understand the conditions necessary for MAR success. We apply fuzzy-set Qualitative Comparative Analysis on 313 world MAR applications, and also model separately for high- and low-middle-income countries. Results show that sophisticated hydrogeological site understanding and scheme operation is paramount for MAR success, as is utilizing natural water sources for high value end uses. Successful high-income country MAR schemes tend to be large and utilize natural water sources and sophisticated water injection and treatment methods to augment potable water supply; while successful low-middle-income country schemes are not large, older than 20 years, and use gravity infiltration methods and (limited) no water treatment. These findings will help inform the future suitability of MAR application design and its likely success within various contexts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Seidl2024130469 Serial 273
Permanent link to this record
 

 
Author Hubbard, B.E.; Gallegos, T.J.; Stengel, V.; Hoefen, T.M.; Kokaly, R.F.; Elliott, B.
Title Hyperspectral (VNIR-SWIR) analysis of roll front uranium host rocks and industrial minerals from Karnes and Live Oak Counties, Texas Coastal Plain Type Journal Article
Year 2024 Publication Journal of Geochemical Exploration Abbreviated Journal
Volume 257 Issue Pages 107370
Keywords Critical minerals, Hyperspectral, Industrial minerals, Mine waste, Texas coastal plain, Uranium
Abstract (down) VNIR-SWIR (400–2500 nm) reflectance measurements were made on the surfaces of various cores, cuttings and sample splits of sedimentary rocks from the Tertiary Jackson Group, and Catahoula, Oakville and Goliad Formations. These rocks vary in composition and texture from mudstone and claystone to sandstone and are known host rocks for roll front uranium occurrences in Karnes and Live Oak Counties, Texas. Spectral reflectance profiles, 569 in total, were reduced to 125 representative spectral signatures, which were analyzed using the U.S. Geological Survey’s (USGS) Material Identification and Characterization Algorithm (MICA). MICA uses an automated continuum-removal procedure together with a least-squares linear regression to determine the fit of observed sample spectral absorption features to those of reference mineral standards in a spectral library. The reference minerals include various clay, mica, carbonate, ferric and ferrous iron minerals and their mixtures. In addition, absorption feature band-depth analysis was done to identify rock surfaces exhibiting absorption features related to uranium and zeolite minerals, which were not included in the command files used to execute MICA. Rocks from each of the four geologic units produced broadly similar spectral signatures as a result of comparable mineral compositions, but there were some notable differences. For example, Ca- and Na-montmorillonite was matched most frequently to the spectral absorption features in 2-μm (∼2000–2500 nm) wavelengths, while goethite occurred often at 1-μm (∼400–1000 nm) wavelengths. The latter is related to limonitic iron-staining in and around oxidized zones of the uranium roll front as described in previous papers. Rocks of the Jackson Group differed from those of the Catahoula, Oakville and Goliad units in that the former exhibited spectral features we interpret as being due to the presence of lignite-bearing mudstone layers. Goliad rocks exhibit spectral features related to dolomite, gypsum, anhydrite, and an unidentified green clay mineral that is possibly glauconite. Jackson Group rocks also exhibit weak but well-resolved absorption features at 964 and 1157 nm related to either or both zeolite minerals clinoptilolite and heulandite. These zeolite minerals and a few spectra exhibiting hydrous silica absorption features are indicative of alteration of volcanic glass in tuffaceous mudstone and claystone layers. A few sample spectra exhibited strong absorption features at around 1135 nm related to the uranium mineral coffinite. Both the 1135 nm coffinite and 1157 nm zeolite absorption features overlap somewhat, potentially making them difficult to distinguish without additional hyperspectral field, laboratory or remote sensing data. The results of this study were compared to mixtures of minerals described for ore, gangue and alteration minerals in deposit models for sandstone-hosted uranium, sedimentary bentonite and sedimentary zeolite. Use of these spectra can help facilitate mapping of both waste materials from the legacy mining of the above commodities, as well as future exploration and resource assessment activities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-6742 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hubbard_hyperspectral_2024 Serial 178
Permanent link to this record
 

 
Author Pham, Q.-N.; Nguyen, T.-C.; Ta, T.-T.; Tran, T.-L.
Title Comprehensive approach to sustainable groundwater management in semi-arid Ninh Thuan plain, Vietnam Type Journal Article
Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 101031
Keywords Climate change, Groundwater, Managed aquifer recharge (MAR), Modeling, Sea level rise, Seawater intrusion, Sustainable groundwater management
Abstract (down) Vietnam is a country with a long coastline and a high population density residing in the coastal plains. The largest dry area in Vietnam, the coastal plain of Ninh Thuan province, always lacks water in the first dry months of the year (Jan., Feb., Mar., and Apr.). Groundwater is an extremely valuable resource for supplies at this time. Therefore, the objective of this study is to establish a comprehensive approach to sustainable groundwater management in this semi-arid region. This approach is not only mitigating the negative impacts of factors such as climate change, sea level rise, and socio-economic development but also suggesting measures for management of aquifer recharge. A groundwater model for a 3-layer system with variable density flow SEAWAT is built to predict the impacts of climate change and sea level rise without a change in groundwater abstraction. This model helps to understand the trend of salt intrusion and lowering groundwater level in the study area. Afterwards, scenarios with different ground water abstraction and groundwater development such as ground dam, infiltration basin have been set up to meet the demands of socio-economic development in the future. Predicted results will show the impacts of the groundwater systems in the area such as groundwater level change, and saltwater intrusion. Controlled groundwater abstraction and some measures of groundwater development such as infiltration basin, underground dam would allow for an increase of up to 50000m3/day in the year 2050 without negative impacts on the aquifer system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ pham_comprehensive_2023 Serial 174
Permanent link to this record