toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Hamutoko, J.; Mapani, B.; Ellmies, R.; Bittner, A.; Külls, C. url  openurl
  Title A fingerprinting method for the identification of uranium sources in alluvial aquifers: An example from the Khan and Swakop Rivers, Namibia Type Journal Article
  Year 2014 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 72 Issue Pages 34-42  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hamutoko2014fingerprinting Serial 19  
Permanent link to this record
 

 
Author (up) Haque, N.; Norgate, T. url  openurl
  Title The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia Type Journal Article
  Year 2014 Publication Journal of Cleaner Production Abbreviated Journal  
  Volume 84 Issue Pages 382-390  
  Keywords Copper, GHG emission, Gold, In-situ leaching, LCA, Uranium  
  Abstract In-situ leaching (ISL) is a chemical method for recovering useful minerals and metals directly from underground ore bodies which is also referred to as ‘solution mining’. ISL is commonly used for uranium mining, accounting for about 45% of global production. The main benefits are claimed to be a lower environmental impact in terms of visual disturbances, emissions, lower energy use, cost compared with conventional open-cut or underground mining methods, and potential utilisation of lower grade resources. However, there is a lack of reported studies on the assessment of the environmental impacts of ISL, particularly greenhouse gas (GHG) emissions using life cycle assessment (LCA) methodology. The SimaPro LCA software was used to estimate the GHG footprint of the ISL of uranium, gold and copper. The total GHG emissions were estimated to be 38.0 kg CO2-e/kg U3O8 concentrate (yellowcake), 29 t CO2-e/kg gold, and 4.78 kg CO2-e/kg Cu. The GHG footprint of ISL uranium was significantly lower than that of conventional mining, however, the footprints of copper and gold were not much less compared with conventional mining methods. This is due to the lower ore grade of ISL deposits and recovery compared with high ore grades and recovery of conventional technology. Additionally, the use of large amount of electricity for pumping in case of ISL contributes to this result. The electricity consumed in pumping leaching solutions was by far the greatest contributor to the well-field related activities associated with ISL of uranium, gold and copper. The main strategy to reduce the GHG footprint of ISL mining should be to use electricity derived from low emission sources. In particular, renewable sources such as solar would be suitable for ISL as these operations are typically in remote locations with smaller deposits compared with conventional mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ haque_greenhouse_2014 Serial 208  
Permanent link to this record
 

 
Author (up) Hayes-Rich, E.; Levy, J.; Hayes-Rich, N.; Lightfoot, D.; Gauthier, Y. url  openurl
  Title Searching for hidden waters: The effectiveness of remote sensing in assessing the distribution and status of a traditional, earthen irrigation system (khettara) in Morocco Type Journal Article
  Year 2023 Publication Journal of Archaeological Science: Reports Abbreviated Journal  
  Volume 51 Issue Pages 104175  
  Keywords Remote sensing, Satellite imagery, , Morocco, Traditional irrigation, Archaeology, Water management  
  Abstract This paper presents the results of a multi-year, interdisciplinary project that aimed to assess the holistic status of the khettara system in Morocco. The khettara (also known as qanat) is a traditional, earthen water management system. Historically the system was used for settlement in regions without access to reliable surface water. It is both a world and local heritage structure, found in rural and urban regions throughout 46 countries. Recent evaluations of this traditional system have advocated for its preservation and use in arid and semi-arid regions, as modern technologies (pump wells, industrial dams, drip irrigation, etc.) have proven to be unsustainable. This project evaluates remote sensing as a tool for assessing the distribution and status of the khettara in Morocco. The results of this project demonstrate that (1) the khettara system played a large role in the historic settlement of arid and semi-arid regions, and (2) the system continues to be an important part of agriculture and life in many oases across Morocco.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-409x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hayesrich2023104175 Serial 256  
Permanent link to this record
 

 
Author (up) Hdeib, R.; Aouad, M. url  openurl
  Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
  Year 2023 Publication Water Science and Engineering Abbreviated Journal  
  Volume 16 Issue 3 Pages 219-225  
  Keywords Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas  
  Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242  
Permanent link to this record
 

 
Author (up) Heaton, T.H.E. url  openurl
  Title Sources of the nitrate in phreatic groundwater in the western Kalahari Type Journal Article
  Year 1984 Publication Journal of Hydrology Abbreviated Journal  
  Volume 67 Issue 1 Pages 249-259  
  Keywords  
  Abstract Elevated levels of nitrate occur in phreatic groundwater in the western Kalahari, Namibia. Nitrate in water containing 0.4–3.1 meq NO−3l−1, of widespread occurrence, has δ15N values in the range +4.9 to +8.0‰, suggesting natural derivation from the soil. The sporadic occurrence of very high levels of nitrate (> 4 meq NO−3l−1), which has δ15N between +9.3 to +18.7‰, reflects pollution derived from animal waste. The importance of considering the possible isotopic effects of denitrification, and the significance of leaching in the nitrogen budget of the Kalahari soil, are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heaton1984249 Serial 278  
Permanent link to this record
 

 
Author (up) Heaton, T.H.E.; Talma, A.S.; Vogel, J.C. url  openurl
  Title Origin and history of nitrate in confined groundwater in the western Kalahari Type Journal Article
  Year 1983 Publication Journal of Hydrology Abbreviated Journal  
  Volume 62 Issue 1 Pages 243-262  
  Keywords  
  Abstract Data are presented for nitrate, dinitrogen and argon concentrations and 15N14N ratios in groundwater, with radiocarbon ages up to 40,000 yr. for three confined sandstone aquifers in the western Kalahari of South West Africa/Namibia. The nitrate is probably generated within the soil of the recharge areas, and its production rate during the period 3000-40,000 B.P. has remained between 0.5 and 1.6 meq NO−3l−1 of recharge water, with ° 15N between + 4 and + 8‰. Variations in the amount of nitrate and of “excess air” in groundwater recharge are found, and can only reflect changes in the environmental conditions during recharge. They must therefore be caused by the climatic changes that have taken place during the past 25,000 yr.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ heaton_origin_1983 Serial 95  
Permanent link to this record
 

 
Author (up) Heaton, T.H.E.; Talma, A.S.; Vogel, J.C. url  openurl
  Title Origin and history of nitrate in confined groundwater in the western Kalahari Type Journal Article
  Year 1983 Publication Journal of Hydrology Abbreviated Journal  
  Volume 62 Issue 1 Pages 243-262  
  Keywords  
  Abstract Data are presented for nitrate, dinitrogen and argon concentrations and 15N14N ratios in groundwater, with radiocarbon ages up to 40,000 yr. for three confined sandstone aquifers in the western Kalahari of South West Africa/Namibia. The nitrate is probably generated within the soil of the recharge areas, and its production rate during the period 3000-40,000 B.P. has remained between 0.5 and 1.6 meq NO−3l−1 of recharge water, with ° 15N between + 4 and + 8‰. Variations in the amount of nitrate and of “excess air” in groundwater recharge are found, and can only reflect changes in the environmental conditions during recharge. They must therefore be caused by the climatic changes that have taken place during the past 25,000 yr.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heaton1983243 Serial 282  
Permanent link to this record
 

 
Author (up) Hebert, B.; Baron, F.; Robin, V.; Lelievre, K.; Dacheux, N.; Szenknect, S.; Mesbah, A.; Pouradier, A.; Jikibayev, R.; Roy, R.; Beaufort, D. url  openurl
  Title Quantification of coffinite (USiO4) in roll-front uranium deposits using visible to near infrared (Vis-NIR) portable field spectroscopy Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 199 Issue Pages 53-59  
  Keywords Coffinite, Mineral quantification, Near infrared, Ore exploration, Portable field spectroscopy, Roll-front deposits  
  Abstract Coffinite (USiO4) is a common uranium-bearing mineral of roll-front uranium deposits. This mineral can be identified by the visible near infrared (Vis-NIR) portable field spectrometers used in mining exploration. However, due to the low detection limits and associated errors, the quantification of coffinite abundance in the mineralized sandstones or sandy sediments of roll-front uranium deposits using Vis-NIR spectrometry requires a specific methodological development. In this study, the 1135 nm absorption band area is used to quantify the abundance of coffinite. This absorption feature does not interfere with NIR absorption bands of any other minerals present in natural sands or sandstones of uranium roll-front deposits. The correlation between the 1135 nm band area and coffinite content was determined from a series of spectra measured from prepared mineral mixtures. The samples were prepared with a range of weighted amounts of arenitic sands and synthetic coffinite simulating the range of uranium concentration encountered in roll-front uranium deposits. The methodology presented in this study provides the quantification of the coffinite content present in sands between 0.03 wt% to 1 wt% coffinite with a detection limit as low as 0.005 wt%. The integrated area of the 1135 nm band is positively correlated with the coffinite content of the sand in this range, showing that the method is efficient to quantify coffinite concentrations typical of roll-front uranium deposits. The regression equation defined in this study was then used as a reference to predict the amount of natural coffinite in a set of mineralized samples from the Tortkuduk uranium roll-front deposit (South Kazakhstan).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hebert_quantification_2019 Serial 184  
Permanent link to this record
 

 
Author (up) Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. url  openurl
  Title A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 621 Issue Pages 129538  
  Keywords Green stormwater infrastructure, Localized inlet pluvial flooding, Opportunity subwatersheds, Stormwater investment prioritization, Resilient urban watershed planning  
  Abstract Mitigation of localized pluvial flooding is one of the major resiliency goals in urban environments, and Green Stormwater Infrastructure (GSI) has the potential to deliver such an outcome. However, there is a lack of systematic approaches to prioritize investment in different candidate areas. This study provides a framework to identify vulnerable stormwater drainage inlets and their contributing areas, prioritize them, identify dominant factors in their selection, assess the potential of GSI in mitigating their overflows, and compare the impact and its cost to gray infrastructure upgrade alternatives. Using SWMM 5.1.013, decision trees, and a volumetric-based assessment of GSI overflow capture, we applied the framework to the City of Dallas, Texas, for three design storms with three GSI practices— bioretention cells, raingardens, and rainwater harvesting tanks. Results showed that there was a significant increase in the number of overflowing stormwater drainage inlets, referred to as hotspots, and their contributing subwatersheds, referred to as opportunity areas, with more intense storms especially in problematic watersheds. Also, prioritization results provided a series of maps to rank the opportunity areas based on overflow severity, recurrence of the overflows, and GSI availability. Moreover, classification results showed that inlet features, especially the inlet depth, were the dominant factors in the identification of the non-problematic inlets. Finally, the GSI impact assessment showed substantial overflow mitigation even at the “very high” severity levels when GSI is comprehensively deployed across opportunity areas. Despite gray infrastructure upgrades yielding higher reduction levels, their cost per cubic meter was higher than GSI. Therefore, a combination of GSI and gray results in maximum overflow reduction at a lower cost compared to common practices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heidari2023129538 Serial 226  
Permanent link to this record
 

 
Author (up) Heine, F.; Einsiedl, F. url  openurl
  Title Groundwater dating with dissolved organic radiocarbon: A promising approach in carbonate aquifers Type Journal Article
  Year 2021 Publication Applied Geochemistry Abbreviated Journal  
  Volume 125 Issue Pages 104827  
  Keywords C groundwater dating, deep carbonate aquifer, DOC, SPE-PPL  
  Abstract A complete hydrogeological understanding of the deep Upper Jurassic carbonate aquifer in the South German Molasse Basin is essential for the future development of this important drinking water resource and geothermally used system. Water chemistry data, δ13CDIC, 14C of the dissolved inorganic carbon (14CDIC) and stable water isotope (δ18O and δD) measurements have been used to evaluate a promising groundwater dating approach with 14C of dissolved organic carbon (14CDOC). The pre-concentration of dissolved organic matter (DOM) was performed by the easy applicable solid phase extraction (SPE) with a styrene-divinylbenzene copolymer sorbent (PPL). Based on the sampling campaign of seven groundwater wells conducted between 2017 and 2019, it was shown that the groundwater is mainly of Ca–HCO3 type with some evidence of ion exchange between Ca2+ and Na+ at two of the investigated wells. The δD values ranged from −89.4‰ to −70.9‰ while δ18O values varied between −12.5‰ and −9.8‰. The obtained stable water isotope signatures indicated that the groundwater is of meteoric origin and was recharged during warm climate (Holocene), intermediate climate and cold climate (Pleistocene) infiltration conditions. The measured 14CDOC activities varied from 5.7 pmC to 51.1 pmC and the calculated piston-flow water ages (ORAs) ranged from 4200 years to 25,248 years using an initial 14C0DOC of 85 pmC. The calculated ORAs showed a very good correlation to the infiltration temperature-sensitive δ18O values which were affirmed with noble gas infiltration temperatures for two wells after Weise et al. (1991) and were also in good accordance with the atmospheric temperature record of the northern hemisphere from Dokken et al. (2015). The results reflect a consistent hydrogeological picture of the carbonate aquifer, which also supports the applicability of the SPE-PPL method for 14CDOC dating in groundwater with a low DOC content (<1 mg/l). In contrast, 14CDIC activities of 1.4 pmC to 21.3 pmC led to geochemically corrected piston-flow ages between 8057 years and >30,000 years and generally to an overestimation of the apparent water ages. This study gives insights into the promising approach of 14CDOC groundwater dating in carbonate aquifers with low DOC contents and allows future sustainable groundwater resource management of the investigated aquifer system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heine2021104827 Serial 216  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: