toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ w14050734 Serial 81  
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C. url  doi
openurl 
  Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
  Year 2022 Publication Water Abbreviated Journal  
  Volume 14 Issue 5 Pages  
  Keywords  
  Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ w14050734 Serial 85  
Permanent link to this record
 

 
Author Hamidian, A.; Ghorbani, M.; Abdolshahnejad, M.; Abdolshahnejad, A. url  openurl
  Title RETRACTED: Qanat, Traditional Eco-technology for Irrigation and Water Management Type Journal Article
  Year 2015 Publication Agriculture and Agricultural Science Procedia Abbreviated Journal  
  Volume 4 Issue Pages 119-125  
  Keywords  
  Abstract This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editor. The authors have plagiarized part of a book Veins of Desert, by Semsar Yazdi, Ali Asghar; Labbaf Khaneiki, Majid published by UNESCO-ICQHS, 2010 pages 2, 3, 5, 6, 7, 11, 44, 156, 157 and 158. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2210-7843 ISBN Medium  
  Area Expedition Conference  
  Notes Efficient irrigation management and its effects in urban and rural landscapes Approved no  
  Call Number THL @ christoph.kuells @ Hamidian2015119 Serial 252  
Permanent link to this record
 

 
Author Tujchneider, O.; Christelis, G.; Gun, J.V. der url  openurl
  Title Towards scientific and methodological innovation in transboundary aquifer resource management Type Journal Article
  Year 2013 Publication Environmental Development Abbreviated Journal  
  Volume 7 Issue Pages 6-16  
  Keywords Communication, Cooperation, Holistic methodological approach, Science, Transboundary aquifer management  
  Abstract Groundwater is both an invaluable and a vulnerable resource. Aquifer resources management, aiming at the responsible exploitation and adequate protection of the groundwater resources, is therefore of key importance and has to be based on sound hydrological, environmental, economic and social principles. Aquifer-wide groundwater projects are carried out to collect the required area-specific information, to understand ongoing processes, to identify the management issues to be addressed and to develop an adequate management strategy and action plan. The quality of the project results depends to a large extent on the science and methodologies adopted in the design and used during the implementation of the projects. In this context, a project was carried out recently to analyse the scientific aspects of—among others—the transboundary aquifer projects within the IW: Portfolio of the Global Environmental Facility (GEF) and to make recommendations for scientific strengthening and innovation. This paper presents the main outcomes of this analysis. In order to accomplish groundwater resources management goals in the case of transboundary aquifers, a balanced joint strategy is needed. Analysis of documentation on completed and on-going transboundary aquifer projects has shown a wide range of scientific activities that contribute positively to the development of such strategies. This analysis has also identified options for increasing the positive impacts of science on strategy development; some of these options have been pioneered already and deserve wider application other ones are relatively new. Important options are: integrating transboundary aquifer resource management in a wider environmental–socio-economical context (holistic approach); exploring causal chains to better understand the processes of change of groundwater resources; using this improved understanding for optimising groundwater assessment and monitoring programmes; and adaptive management. In addition, to obtain maximum benefit of the scientific results there is a general need to promote effective communication at all levels, between the scientific community and policy-/decision makers, as well as with the local community who have a major role to play in the use and conservation of the resources. All of this should be accompanied by the harmonisation of the legal instruments and co-operation agreements between countries and the communities involved. Two case studies, one in South America and one in Southern Africa, are added as examples of the setting and approach of the analysed transboundary aquifer projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2211-4645 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tujchneider_towards_2013 Serial 105  
Permanent link to this record
 

 
Author Arya, S.; Kumar, A. url  openurl
  Title Evaluation of stormwater management approaches and challenges in urban flood control Type Journal Article
  Year 2023 Publication Urban Climate Abbreviated Journal  
  Volume 51 Issue Pages 101643  
  Keywords Flood risk, Green infrastructure (GI), Stormwater management, Stormwater modelling, Vulnerability assessment, Urban floods  
  Abstract Across the globe, the damage caused by urban floods has increased manifold. The unchecked development has encroached the natural drainage, and the conventional drainage systems are inadequate in handling the augmented hydrological response. To counter this, a variety of approaches with the ability to adjust within the constraints of complex environments by managing surface runoff are being widely investigated and applied worldwide. These can put the flood water to better use, and the ecological balance may get restored. This review discusses recent progress made in the area of Green Infrastructure (GI), modelling tools that help in stormwater management, vulnerability analysis and flood risk assessment. Different ways of handling the problem are summarized through an extensive literature survey. The gaps and barriers that impede the implementation of stormwater management solutions and strategies for further improvement have also been presented. A case study of Gurugram city, India depicting the challenges being faced by urban flooding and the possible solutions through an expert survey is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Arya2023101643 Serial 224  
Permanent link to this record
 

 
Author Nijsten, G.-J.; Christelis, G.; Villholth, K.G.; Braune, E.; Gaye, C.B. url  openurl
  Title Transboundary aquifers of Africa: Review of the current state of knowledge and progress towards sustainable development and management Type Journal Article
  Year 2018 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 20 Issue Pages 21-34  
  Keywords Africa, Assessment, Governance, Indicators, Transboundary aquifers  
  Abstract Study region Transboundary aquifers (TBAs) of Africa. Study focus Review of work on TBAs in Africa, including an overview of assessments and management efforts that have taken place over the last half century. New hydrological insights Seventy-two TBAs have been mapped in Africa. They underlie 40% of the continent, where 33% of the population lives, often in arid or semi-arid regions. TBA inventories have progressed since 2000 and remain work in progress. Despite their importance only eleven TBAs have been subjected to more detailed studies. Cooperation has been formalised for seven TBAs. Most of these TBAs are in North Africa and the Sahel. The recent global Transboundary Waters Assessment Programme compiled information at the national level to describe TBAs in terms of key indicators related to the water resource, socio-economic, and legal and institutional conditions. Availability of data at national level is low, hampering regional assessment. Comparing indicators, from questionnaire surveys, with those from a global water-use model showed variable levels of agreement, calling for further research. Reports on agreements scoping TBA management, indicate that this may be dealt with within international river/lake agreements, but reported inconsistencies between TBA sharing countries also indicate that implementation is limited. Increasing awareness and support to joint TBA management is noticeable amongst international organisations. However, such cooperation requires long-term commitment to produce impacts at the local level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ nijsten_transboundary_2018 Serial 93  
Permanent link to this record
 

 
Author Burchi, S. url  openurl
  Title Legal frameworks for the governance of international transboundary aquifers: Pre- and post-ISARM experience Type Journal Article
  Year 2018 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 20 Issue Pages 15-20  
  Keywords International aquifers, International aquifers agreements, International groundwater law, UN draft articles on the law of transboundary aquifers  
  Abstract Study region Africa, Latin America, Europe. Study focus Through the extensive study and mapping of the world’s aquifers that lie astride the international boundary lines of sovereign States, ISARM has awakened concerned States to the existence of aquifers stretching beyond their borders, and precipitated cooperation in generating a body of knowledge that facilitated cooperation in governance arrangements for such aquifers. In parallel, ISARM influenced the shape and direction of the United Nations “Draft articles on the law of transboundary aquifers” appended to UN Resolution 63/124 of 2008. Both stimulated cooperation among concerned States, and provided a frame of reference for the legal grounding of such cooperation in aquifer-specific agreements. New hydrological insights Through this synergistic paradigm, ISARM has made an impact on the shape and direction of cooperation in the Guaraní Aquifer in South America, and in the Iullemeden and Taoudeni/Tanezrouft Aquifer Systems (ITAS) in the Sahel region of Africa. It is having an influence on the shape and direction of cooperation being negotiated on the Stampriet Aquifer System in Southern Africa, and on the Ocotepeque-Citalá Aquifer in Central America. The link of ISARM to other international aquifer agreements on record is tenuous, and ISARM’s influence on their generation speculative. The visibility of ISARM has faded since 2012, however its legacy is lasting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ burchi_legal_2018 Serial 100  
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages 101585  
  Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
 

 
Author Ibrahim, A.S.; Zayed, I.S.A.; Abdelhaleem, F.S.; Afify, M.M.; Ahmed, A.; Abd-Elaty, I. url  openurl
  Title Identifying cost-effective locations of storage dams for rainfall harvesting and flash flood mitigation in arid and semi-arid regions Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages 101526  
  Keywords Flash flood, Morphometric parameters, GIS, Cost-effective, Wadi Tayyibah, Dams  
  Abstract Study region Wadi Tayyibah is located in south Sinai, Egypt, in a region called Abou Zenima, and it is used to develop this study. Study focus Flash floods tremendously impact many facets of human life due to their destructive consequences and the costs associated with mitigating efforts. This study aims to evaluate the harvesting of Runoff by delineating the watersheds using the Hydrologic Engineering Center-1 (HEC-1) model and ArcGIS software in trying to benefit from it in different ways. All morphometric parameters of the basin were considered, and the risk degree of the different sub-basins was determined. The suitable locations of dams were identified using a Geographical Information System (GIS) using the basin’s morphometric characteristics. New hydrological insights for the region The study proposed a total number of eight dams, including five dams that were recommended for sub-basin (1) and three dams in sub-basin (4), while sub-basins (2) and (3) are not suitable locations to build dams according to the contour map of Wadi Tayyibah. Results indicate that, based on the constructed flash flood hazard maps and the basin’s detailed morphometric characteristics, the best locations of dams are Dam (3) in sub-basin (1) and Dam (7) in sub-basin (4), where the runoff volume reached 3.13 million cubic meters (Mm3) and 5.56 Mm3 for return period 100, respectively. This study is useful for decision-makers and designers for using morphometric parameters and flash flood hazard degree maps to select dam locations. Also, the cost-benefit analysis for using the morphometric parameters is required to be investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ibrahim2023101526 Serial 238  
Permanent link to this record
 

 
Author Zaeri, A.; Mohammadi, Z.; Rezanezhad, F. url  openurl
  Title Determining the source and mechanism of river salinity: An integrated regional study Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 47 Issue Pages 101411  
  Keywords River salinity, Salinization mechanism, Isotope, Halite brine, River sinuosity  
  Abstract Study region Zohreh River Basin, Southwest Iran Study focus The salinity of Zohreh River sharply increases in three salinity zones (SZs) along the river named SZ1, SZ2 (the focus of this study), and SZ3. Determining the salinity sources and salinization mechanism using an integrated approach including geological, hydrochemical, isotopic, geophysical, river sinuosity and hydrocarbon analysis are the main objectives of this study. The study focuses on the combination of evidence of regional-scale (i.e., river sinuosity and seismic data) and small-scale (i.e., drilling core analysis). New hydrologic insights for the region Among several known sources of river salinity, it was found that the water quality of the Zohreh River is mainly threatened by the salt-bearing Gachsaran Formation and oil-field brine. It is concluded that halite brine and oil-field brine simultaneously cause the salinization in SZ2, and their contributions were delineated to be 95% and 5%, respectively. The lack of reliable geological evidence to support halite dissolution in surficial layers by circulating waters suggests the possibility of a deep source of halite brine in SZ2. The results revealed that deep halite brine of the salt layers of Gachsaran Formation is mainly responsible for the salinization of SZ2. The mechanism of deep brine penetration to the river through the hidden fault failures detected by the combination of river sinuosity analysis and geophysical data for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zaeri2023101411 Serial 251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: