toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L. url  openurl
  Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 865 Issue Pages 161033  
  Keywords (up) Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining  
  Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155  
Permanent link to this record
 

 
Author Zhou, Y.; Li, G.; Xu, L.; Liu, J.; Sun, Z.; Shi, W. url  openurl
  Title Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching – an example from the Kujieertai Type Journal Article
  Year 2020 Publication Hydrometallurgy Abbreviated Journal  
  Volume 191 Issue Pages 105209  
  Keywords (up) Acid in-situ leaching, Sandstone-type uranium deposit, Uranium deportment in the ore, Uranium recovery, Water-rock interaction  
  Abstract The factors influencing uranium recovery in water-rock systems during acid in-situ leaching (ISL) were studied at the Kujieertai uranium deposit in Xinjiang. Using an ISL unit, a field leach trial (FLT) had been carried out to test the sequential effects of a leaching solution without oxidant (H2SO4 solution 4–8 g/L) and a leaching solution with oxidant (H2SO4 3–7 g/L, and Fe (III) 2–6 g/L). The observation of the leaching process revealed clearly defined stages of uranium release from the solid mineral to solution. Uranium mobilization from solid mineral into solution can be described in four stages. At the beginning of the acid ISL process, there was no oxidant to be added to the leaching solution and the desorption of hexavalent uranyl ions in the open pores, as well as dissolution of hexavalent uranium minerals, led to a short-term peak in the pregnant solution, which happened while pH decreased from about 5.3 to 2.62. Following the depletion of the adsorbed hexavalent uranium and a decline in uranium dissolution intensity, the addition of Fe(III) facilitated the oxidation of tetravalent uranium, which enabled intensive uranium mobilization again. During this process, the dissolution of uranium had a strong positive correlation with the reduction of Fe(III) and Eh in the leach solution. Beside hydrochemical factors, the deportment of uranium was also an important factor affecting uranium recovery. Uranium located in the open pores can be completely exposed to the solution and the mobilization intensity was significantly affected by hydrogeochemical conditions; but the uranium present in microfissures and in the ore matrix could not be fully exposed to the solution, so, their dissolution intensity was primarily controlled by corrosion and permeability of the ore. In general, the hydrogeochemical conditions and the deportment of uranium were the external and internal factors that significantly affected the dissolution and recovery of uranium in the early and middle stages of the FLT. However, in the latest stages, due to uranium depletion, enhancing the chemical potential of the leaching solution, specifically acidity and/or the amount of oxidant, had little improvement on uranium recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhou_uranium_2020 Serial 205  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. url  openurl
  Title Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
  Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 53 Issue 12 Pages 4033-4041  
  Keywords (up) Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore  
  Abstract To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_pore_2021 Serial 199  
Permanent link to this record
 

 
Author Alexander, A.C.; Ndambuki, J.M. url  openurl
  Title Impact of mine closure on groundwater resource: Experience from Westrand Basin-South Africa Type Journal Article
  Year 2023 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 131 Issue Pages 103432  
  Keywords (up) Acid mine drainage, Groundwater quality, Mine closure, Spatio-temporal variation, Westrand Basin  
  Abstract The mining sector is at the edge of expanding to cater for natural resources that are much needed for technological development and manufacturing. Mushrooming of mines will consequently increase the number of mines closure. Moreover, mines closure have adverse impact on the environment at large and specifically on water resources. This study analyses historical groundwater quality parameters in mine intensive basin of Westrand Basin (WRB) to understand the status of groundwater quality in relation to mining activities and mine closure. Geographic information system (GIS) was used to map the spatio-temporal variation of groundwater quality in the basin and groundwater quality index (GQI) to evaluate its status. The coefficient of variation (CV) was applied to understand the stability of groundwater quality after the mine closure. Results indicated unstable and altered trend with increasing levels of acidity and salts concentration around the mines vicinity following the mine closure. The resultant maps indicated a significant deterioration of groundwater quality around the WRB with concentrations decreasing downstream. Obtained average GQI for the study period of 1996–2015 suggested a moderate groundwater quality at a range of GQI = 64–73. The CV indicated varying water quality at CV \textgreater 30% suggesting presence of source of contamination. Observed groundwater quality trends in Westrand basin suggested that mines closure present potential threat on groundwater quality and thus, a need for a robust mine closure plan and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ alexander_impact_2023 Serial 134  
Permanent link to this record
 

 
Author Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R. url  openurl
  Title Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching Type Journal Article
  Year 2011 Publication Chemosphere Abbreviated Journal  
  Volume 82 Issue 8 Pages 1178-1184  
  Keywords (up) Acid mine water, Contaminant removal, Surface stabilizing shell, Water treatment, Zero-valent iron nanoparticles  
  Abstract Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation–reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ klimkova_zero-valent_2011 Serial 196  
Permanent link to this record
 

 
Author Bonnetti, C.; Zhou, L.; Riegler, T.; Brugger, J.; Fairclough, M. url  openurl
  Title Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle Type Journal Article
  Year 2020 Publication Geochimica et Cosmochimica Acta Abbreviated Journal  
  Volume 282 Issue Pages 113-132  
  Keywords (up) Activity cycle, Pyrite composition, Roll front uranium deposits, S isotope and trace element fractionation  
  Abstract Complex pyrite textures associated with large changes in isotopic and trace element compositions are routinely assumed to be indicative of multi-faceted processes involving multiple fluid and sulfur sources. We propose that the features of ore-stage pyrite from roll front deposits across the world, revealed in exquisite detail via high-resolution trace element mapping by LA-ICP-MS, reflect the dynamic internal evolution of the biogeochemical processes responsible for sulfate reduction, rather than externally driven changes in fluid or sulfur sources through time. Upon percolation of oxidizing fluids into the reduced host-sandstones, roll front systems become self-organized, with a systematic reset of their activity cycle after each translation stage of the redox interface down dip of the aquifer. Dominantly reducing conditions at the redox interface favor the formation of biogenic framboidal pyrite (δ34S from −30.5 to −12.5‰) by bacterial sulfate reduction and the genesis of the U mineralization. As the oxidation front advances, oxidation of reduced sulfur minerals induces an increased supply of sulfate and metals in solution to the bacterial sulfate reduction zone that has similarly advanced down the flow gradient. Hence, this stage is marked by increased rates of the bacterial sulfate reduction associated with the crystallization of variably As-Co-Ni-Mo-enriched concentric pyrite (up to 10,000′s of ppm total trace contents) with moderately negative δ34S values (from −13.7 to −7.5‰). A final stage of pyrite cement with low trace element contents and heavier δ34S signature (from −6.9 to +18.8‰) marks the end of the roll front activity cycle and the transition from an open to a predominantly closed system behavior (negligible advection of fresh sulfate). Blocky pyrite cement is formed using the remaining sulfate, which now becomes quickly heavy according to a Rayleigh isotope fractionation process. This ends the cycle by depleting the nutrient supplies for the sulfate-reducing bacteria and cementing pore spaces within the host sandstone, effectively restricting fluid infiltration. This internally-driven roll front activity cycle results in systematic, large S isotope and trace element fractionation. Ultimately, the long-time evolution of the basin and fluid sources control the metal endowment and evolution of the system; these events, however, are unlikely to be preserved by the roll front, as a direct result of its hydrodynamic nature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ bonnetti_large_2020 Serial 185  
Permanent link to this record
 

 
Author Priestley, S.C.; Payne, T.E.; Harrison, J.J.; Post, V.E.A.; Shand, P.; Love, A.J.; Wohling, D.L. url  openurl
  Title Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia Type Journal Article
  Year 2018 Publication Applied Geochemistry Abbreviated Journal  
  Volume 98 Issue Pages 331-344  
  Keywords (up) Activity ratios, Central Australia, Great Artesian Basin, Hydrogeology, Sequential extraction, Uranium isotopes  
  Abstract The distribution of uranium isotopes (238U and 234U) in groundwaters of the south-western margin of the Great Artesian Basin (GAB), Australia, and underlying Arckaringa Basin were examined using groundwater samples and a sequential extraction of aquifer sediments. Rock weathering, the geochemical environment and α-recoil of daughter products control the 238U and 234U isotope distributions giving rise to large spatial variations. Generally, the shallowest aquifer (J aquifer) contains groundwater with higher 238U activity concentrations and 234U/238U activity ratios close to secular equilibrium. However, the source input of uranium is spatially variable as intermittent recharge from ephemeral rivers passes through rocks that have already undergone extensive weathering and contain low 238U activity concentrations. Other locations in the J aquifer that receive little or no recharge contain higher 238U activity concentrations because uranium from localised uranium-rich rocks have been leached into solution and the geochemical environment allows the uranium to be kept in solution. The geochemical conditions of the deeper aquifers generally result in lower 238U activity concentrations in the groundwater accompanied by higher 234U/238U activity ratios. The sequential extraction of aquifer sediments showed that α-recoil of 234U from the solid mineral phases into the groundwater, rather than dissolution of, or exchange with the groundwater accessible minerals in the aquifer, caused enrichment of groundwater 234U/238U activity ratios in the Boorthanna Formation. Decay of 238U in uranium-rich coatings on J aquifer sediments caused resistant phase 234U/238U activity ratio enrichment. The groundwater 234U/238U activity ratio is dependent on groundwater residence time or flow rate, depending on the flow path trajectory. Thus, uranium isotope variations confirmed earlier groundwater flow interpretations based on other tracers; however, spatial heterogeneity, and the lack of clear regional correlations, made it difficult to identify recharge and inter-aquifer leakage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ priestley_use_2018 Serial 115  
Permanent link to this record
 

 
Author Prusty, S.; Somu, P.; Sahoo, J.K.; Panda, D.; Sahoo, S.K.; Sahoo, S.K.; Lee, Y.R.; Jarin, T.; Sundar, L.S.; Rao, K.S. url  openurl
  Title Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review Type Journal Article
  Year 2022 Publication Chemosphere Abbreviated Journal  
  Volume 308 Issue Pages 136278  
  Keywords (up) Adsorbents, Adsorption, Techniques, Uranium, Wastewater  
  Abstract Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ prusty_adsorptive_2022 Serial 131  
Permanent link to this record
 

 
Author Nijsten, G.-J.; Christelis, G.; Villholth, K.G.; Braune, E.; Gaye, C.B. url  openurl
  Title Transboundary aquifers of Africa: Review of the current state of knowledge and progress towards sustainable development and management Type Journal Article
  Year 2018 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 20 Issue Pages 21-34  
  Keywords (up) Africa, Assessment, Governance, Indicators, Transboundary aquifers  
  Abstract Study region Transboundary aquifers (TBAs) of Africa. Study focus Review of work on TBAs in Africa, including an overview of assessments and management efforts that have taken place over the last half century. New hydrological insights Seventy-two TBAs have been mapped in Africa. They underlie 40% of the continent, where 33% of the population lives, often in arid or semi-arid regions. TBA inventories have progressed since 2000 and remain work in progress. Despite their importance only eleven TBAs have been subjected to more detailed studies. Cooperation has been formalised for seven TBAs. Most of these TBAs are in North Africa and the Sahel. The recent global Transboundary Waters Assessment Programme compiled information at the national level to describe TBAs in terms of key indicators related to the water resource, socio-economic, and legal and institutional conditions. Availability of data at national level is low, hampering regional assessment. Comparing indicators, from questionnaire surveys, with those from a global water-use model showed variable levels of agreement, calling for further research. Reports on agreements scoping TBA management, indicate that this may be dealt with within international river/lake agreements, but reported inconsistencies between TBA sharing countries also indicate that implementation is limited. Increasing awareness and support to joint TBA management is noticeable amongst international organisations. However, such cooperation requires long-term commitment to produce impacts at the local level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ nijsten_transboundary_2018 Serial 93  
Permanent link to this record
 

 
Author Weerahewa, J.; Timsina, J.; Wickramasinghe, C.; Mimasha, S.; Dayananda, D.; Puspakumara, G. url  openurl
  Title Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services Type Journal Article
  Year 2023 Publication Agricultural Systems Abbreviated Journal  
  Volume 205 Issue Pages 103580  
  Keywords (up) Agriculture, Climate change, Hydrology, Village tank cascade system, Tank irrigation, Watershed  
  Abstract CONTEXT Ancient irrigation systems (AISs) have been providing a multitude of ecosystem services to rural farming and urban communities in Asia and Africa, especially in arid and semi-arid climatic areas with low rainfall. Many AISs, however have now been degraded. A systematic analysis of AISs on their typologies, causes of degradation, and their ecosystem services is lacking. OBJECTIVE The objective of this review was to synthesize the knowledge on AISs on their typologies, status and causes of degradation, ecosystem services and functions, and identify gaps in research in Asia and Africa. METHOD A critical review of peer-reviewed journal papers, conference and workshop proceedings, book chapters, grey literature, and country reports was conducted. Qualitative and quantitative information from journal papers were used to conceptualize the typologies and analyze the status and causes of degradation, and ecosystems services and functions provided by the AISs. RESULTS AND CONCLUSION Based on the review, we classified AISs into three groups by source of irrigation water: Rainwater harvesting system (RHS) with small reservoirs, ground water based system, and floodwater based system. The RHSs, which used to receive reliable rainfall and managed by well cohesive social organizations for their maintenance and functioning in past, have now been silting due to extreme rainfall pattern and breakdown of the cohesive organizations in recent decades. In ground water based systems, indiscriminate development of deep tube wells causing siltation of channels has been a major challenge. In floodwater irrigation systems, irregular rainfall in the highlands and the breakage of irrigation structures by destructive floods were the main causes of degradation. Lack of maintenance and increased soil erosion, inadequate skilled manpower, and declining support from the government for repair and maintenance were the main causes of degradation of all AISs. The main ecosystem service provided by all AISs is water for agriculture. In tank- and pond-based systems, fish farming is also practiced. Tank irrigation systems provide various types of provisioning, regulatory, cultural and supporting services, especially in India and Sri Lanka. Ground water based systems provide water for domestic purposes and various cultural services. Floodwater based systems provide water for power generation and wildlife habitat maintenance and help in flood control. SIGNIFICANCE The knowledge generated through the review provide evidence-based information, and help aware governments, private sectors and development agencies for improved policy planning and decision making, and prioritizing the restoration, rehabilitation, and management of various AISs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Weerahewa2023103580 Serial 275  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: