toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Remmington, G. url  openurl
  Title Transforming tradition: The aflaj and changing role of traditional knowledge systems for collective water management Type Journal Article
  Year 2018 Publication Journal of Arid Environments Abbreviated Journal  
  Volume 151 Issue Pages 134-140  
  Keywords (up) Collective action, Subterranean tunnel-wells, , Traditional knowledge, Hydraulic heritage  
  Abstract Living in a harsh, desert climate, Omani rural communities have developed locally-appropriate knowledge to deal with water scarcity. Similar to the qanat, the aflaj taps into the natural water table and uses a gravity system to channel water through underground channels to villages. Traditional techniques of water management, such as the aflaj, represents a way of adapting to and coping with difficult climates which have persisted for millennia. However, knowledge systems have often ‘decayed’ with the onset of modernity. These management systems, which developed concurrently with early Omani date palm cultivation, have defined customary and hereditary water rights which are in decline. This article uses Ostrom’s Common Pool Resource (CPR) framework, which prioritises the collective management of shared resources to maximise the benefit for all involved and avoid diminishing benefits that are created by the pursuit of individual goals. Using this framework, this article’s evaluation of the literature found that traditional aflaj management systems have a great capacity to evolve and, therefore, the aflaj represents both a dying system, and a potential for climate adaptation. Historically, aflaj have been managed by ancient water users associations, which provide social controls and govern usage norms. The findings of this review are that the aflaj system’s ability to respond to pressures of modernity from competing institutions, including markets, and embedded social capital mechanisms will influence its capacity to mitigate uncertain hydrology and climate. This article suggests ways in which the management of the aflaj can adapt to a multiple institutional framework to ‘transform’ collective water management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Remmington2018134 Serial 258  
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Zielinski, R.A. url  openurl
  Title Sandstone-hosted uranium deposits of the Colorado Plateau, USA Type Journal Article
  Year 2023 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 155 Issue Pages 105353  
  Keywords (up) Colorado, Plateau, Uranium, Vanadium  
  Abstract More than 4,000 sandstone-hosted uranium occurrences host over 1.2 billion pounds of mined and in situ U3O8 throughout the Colorado Plateau. Most of the resources are in two distinct mineral systems with deposits hosted in the Triassic Chinle and Jurassic Morrison Formations. In the Chinle mineral system, base metal sulfides typically accompany mineralization. The Morrison mineral system is characterized by V/U ratios up to 20. The uranium source was likely volcanic ash preserved as bentonitic mudstones in the Brushy Basin Member of the Morrison Formation, and lithic volcanic clasts, ash shards, and bentonitic clay in the lower part of the Chinle Formation. Vanadium originated from two possible sources: iron–titanium oxides that are extensively altered in bleached rock near deposits or from similar minerals in variably bleached red beds interbedded with and beneath the Morrison. In Chinle-hosted deposits, in addition to volcanic ash, a contributing source of both vanadium and uranium is proposed here for the first time to be underlying red beds in the Moenkopi and Cutler Formations that have undergone a cycle of reddening-bleaching-reoxidation. Transport in both systems was likely in groundwater through the more permeable sandstones and conglomerate units. The association of uranium minerals with carbonate and more rarely apatite, suggests that transport of uranium was as a carbonate or phosphate complex. The first comprehensive examination of paleoclimate, paleotopography, and subsurface structure of aquifers coupled with analysis of the geochronology of deposits suggests that that there were distinct pulses of uranium mineralization/redistribution during the period from about 259 Ma to 12 Ma when oxidized mineralizing fluids were intermittently rejuvenated in the Plateau in response to changes in tectonic regime and climate. Multiple lines of evidence indicate that deposits formed at ambient temperatures of about 25 °C to no greater than about 140 °C. In both systems, deposits formed where groundwater flow slowed and was subject to evaporative concentration. Stagnant conditions allowed for prolonged interaction of U- and V-enriched groundwater with ferrous iron-bearing reductants, such as illite and iron–titanium oxides, and more rarely organic material such as plant debris. Paragenetically late in the sequence, reducing fluids introduced additional organic matter to some deposits. Reducing fluids and introduced organic matter (now amorphous and altered by radiolysis) may originate from regional petroleum systems where peak oil and gas generation was from ∼ 82 to ∼ 5 Ma. Our novel analysis indicates that these reducing fluids bleached rock and protected affected deposits from remobilization during exposure and weathering that followed uplift of the Plateau (∼80 to 40 Ma).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hall_sandstone-hosted_2023 Serial 111  
Permanent link to this record
 

 
Author Tujchneider, O.; Christelis, G.; Gun, J.V. der url  openurl
  Title Towards scientific and methodological innovation in transboundary aquifer resource management Type Journal Article
  Year 2013 Publication Environmental Development Abbreviated Journal  
  Volume 7 Issue Pages 6-16  
  Keywords (up) Communication, Cooperation, Holistic methodological approach, Science, Transboundary aquifer management  
  Abstract Groundwater is both an invaluable and a vulnerable resource. Aquifer resources management, aiming at the responsible exploitation and adequate protection of the groundwater resources, is therefore of key importance and has to be based on sound hydrological, environmental, economic and social principles. Aquifer-wide groundwater projects are carried out to collect the required area-specific information, to understand ongoing processes, to identify the management issues to be addressed and to develop an adequate management strategy and action plan. The quality of the project results depends to a large extent on the science and methodologies adopted in the design and used during the implementation of the projects. In this context, a project was carried out recently to analyse the scientific aspects of—among others—the transboundary aquifer projects within the IW: Portfolio of the Global Environmental Facility (GEF) and to make recommendations for scientific strengthening and innovation. This paper presents the main outcomes of this analysis. In order to accomplish groundwater resources management goals in the case of transboundary aquifers, a balanced joint strategy is needed. Analysis of documentation on completed and on-going transboundary aquifer projects has shown a wide range of scientific activities that contribute positively to the development of such strategies. This analysis has also identified options for increasing the positive impacts of science on strategy development; some of these options have been pioneered already and deserve wider application other ones are relatively new. Important options are: integrating transboundary aquifer resource management in a wider environmental–socio-economical context (holistic approach); exploring causal chains to better understand the processes of change of groundwater resources; using this improved understanding for optimising groundwater assessment and monitoring programmes; and adaptive management. In addition, to obtain maximum benefit of the scientific results there is a general need to promote effective communication at all levels, between the scientific community and policy-/decision makers, as well as with the local community who have a major role to play in the use and conservation of the resources. All of this should be accompanied by the harmonisation of the legal instruments and co-operation agreements between countries and the communities involved. Two case studies, one in South America and one in Southern Africa, are added as examples of the setting and approach of the analysed transboundary aquifer projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-4645 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tujchneider_towards_2013 Serial 105  
Permanent link to this record
 

 
Author Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y. url  openurl
  Title A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
  Year 2014 Publication Hydrometallurgy Abbreviated Journal  
  Volume 150 Issue Pages 99-106  
  Keywords (up) Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution  
  Abstract Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201  
Permanent link to this record
 

 
Author Emparanza, A.R.; Kampmann, R.; Caso, F.D.; Morales, C.; Nanni, A. url  openurl
  Title Durability assessment of GFRP rebars in marine environments Type Journal Article
  Year 2022 Publication Construction and Building Materials Abbreviated Journal  
  Volume 329 Issue Pages 127028  
  Keywords (up) Composite FRP rebar, Durability, Service life, Marine structures, Reinforced concrete  
  Abstract Technologies developed over the last two decades have facilitated the use of glass fiber reinforced polymer (GFRP) bars as internal reinforcement for concrete structures, specially in coastal environments, mainly due to their corrosion resistance. To-date, most durability studies have focused on a single mechanical parameter (tensile strength) and a single aging environment (exposure to high alkalinity). However, knowledge gaps exists in understanding how other mechanical parameters and relevant conditioning environments may affect the durability of GFRP bars. To this end, this study assesses the durability for different physio-mechanical properties of GFRP rebars, post exposure to accelerated conditioning in seawater. Six different GFRP rebar types were submerged in seawater tanks, at various temperatures (23°C, 40°C and 60°C) for different time periods (60, 120, 210 and 365 days). In total six different physio-mechanical properties were assessed, including: tensile strength, E-modulus, transverse and horizontal shear strength, micro-structural composition and lastly, bond strength. It was inferred that rebars with high moisture absorption resulted in poor durability, in that it affected mainly the tensile strength. Based on the Arrhenius model, at 23°C all the rebars that met the acceptance criteria by ASTM D7957 are expected to retain 85% of the tensile strength capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ruizemparanza2022127028 Serial 83  
Permanent link to this record
 

 
Author Frumkin, A.; Gvirtzman, H. url  openurl
  Title Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel Type Journal Article
  Year 2006 Publication Journal of Hydrology Abbreviated Journal  
  Volume 318 Issue 1 Pages 316-333  
  Keywords (up) Confined karst, Groundwater, HS, Maze caves, Rising water, Yarkon–Taninim aquifer  
  Abstract It is proposed that a geothermal artesian karstic system at the central part of the Yarkon–Taninim aquifer creates the ‘Ayalon Saline Anomaly’ (ASA), whose mechanism has been under debate for several decades. A 4-year-long detailed groundwater monitoring was carried out at 68 new shallow boreholes in the Ayalon region, accompanied by a comprehensive survey of karstic voids. Results indicate the rising of warm-brackish groundwater through highly permeable swarms of karstic shafts, serving as an outflow of the artesian geothermal system. The ASA area contains ‘hot spots’, where groundwater contrasts with ‘normal’ water hundreds of meters away. The ASA temperature reaches 30°C (∼5°C warmer than its surroundings), chloride concentration reaches 528mg/l (50–100mg/l in the surrounding), H2S concentration reaches 5.6mg/l (zero all around) and pH value is 7.0 (compared with 7.8 around). Subsequently, the hydrothermal water flows laterally of at the watertable horizon through horizontal conduits, mixing with ‘normal’ fresh water which had circulated at shallow depth. Following rainy seasons, maximal watertable rise is observed in the ASA compared to its surroundings. Regional hydrogeology considerations suggest that the replenishment area for the ASA water is at the Samaria Mountains, east of the ASA. The water circulates to a great depth while flowing westward, and a cross-formational upward flow is then favored close the upper sub-aquifer’s confinement border.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ frumkin_cross-formational_2006 Serial 117  
Permanent link to this record
 

 
Author Haque, N.; Norgate, T. url  openurl
  Title The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia Type Journal Article
  Year 2014 Publication Journal of Cleaner Production Abbreviated Journal  
  Volume 84 Issue Pages 382-390  
  Keywords (up) Copper, GHG emission, Gold, In-situ leaching, LCA, Uranium  
  Abstract In-situ leaching (ISL) is a chemical method for recovering useful minerals and metals directly from underground ore bodies which is also referred to as ‘solution mining’. ISL is commonly used for uranium mining, accounting for about 45% of global production. The main benefits are claimed to be a lower environmental impact in terms of visual disturbances, emissions, lower energy use, cost compared with conventional open-cut or underground mining methods, and potential utilisation of lower grade resources. However, there is a lack of reported studies on the assessment of the environmental impacts of ISL, particularly greenhouse gas (GHG) emissions using life cycle assessment (LCA) methodology. The SimaPro LCA software was used to estimate the GHG footprint of the ISL of uranium, gold and copper. The total GHG emissions were estimated to be 38.0 kg CO2-e/kg U3O8 concentrate (yellowcake), 29 t CO2-e/kg gold, and 4.78 kg CO2-e/kg Cu. The GHG footprint of ISL uranium was significantly lower than that of conventional mining, however, the footprints of copper and gold were not much less compared with conventional mining methods. This is due to the lower ore grade of ISL deposits and recovery compared with high ore grades and recovery of conventional technology. Additionally, the use of large amount of electricity for pumping in case of ISL contributes to this result. The electricity consumed in pumping leaching solutions was by far the greatest contributor to the well-field related activities associated with ISL of uranium, gold and copper. The main strategy to reduce the GHG footprint of ISL mining should be to use electricity derived from low emission sources. In particular, renewable sources such as solar would be suitable for ISL as these operations are typically in remote locations with smaller deposits compared with conventional mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ haque_greenhouse_2014 Serial 208  
Permanent link to this record
 

 
Author Hubbard, B.E.; Gallegos, T.J.; Stengel, V.; Hoefen, T.M.; Kokaly, R.F.; Elliott, B. url  openurl
  Title Hyperspectral (VNIR-SWIR) analysis of roll front uranium host rocks and industrial minerals from Karnes and Live Oak Counties, Texas Coastal Plain Type Journal Article
  Year 2024 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 257 Issue Pages 107370  
  Keywords (up) Critical minerals, Hyperspectral, Industrial minerals, Mine waste, Texas coastal plain, Uranium  
  Abstract VNIR-SWIR (400–2500 nm) reflectance measurements were made on the surfaces of various cores, cuttings and sample splits of sedimentary rocks from the Tertiary Jackson Group, and Catahoula, Oakville and Goliad Formations. These rocks vary in composition and texture from mudstone and claystone to sandstone and are known host rocks for roll front uranium occurrences in Karnes and Live Oak Counties, Texas. Spectral reflectance profiles, 569 in total, were reduced to 125 representative spectral signatures, which were analyzed using the U.S. Geological Survey’s (USGS) Material Identification and Characterization Algorithm (MICA). MICA uses an automated continuum-removal procedure together with a least-squares linear regression to determine the fit of observed sample spectral absorption features to those of reference mineral standards in a spectral library. The reference minerals include various clay, mica, carbonate, ferric and ferrous iron minerals and their mixtures. In addition, absorption feature band-depth analysis was done to identify rock surfaces exhibiting absorption features related to uranium and zeolite minerals, which were not included in the command files used to execute MICA. Rocks from each of the four geologic units produced broadly similar spectral signatures as a result of comparable mineral compositions, but there were some notable differences. For example, Ca- and Na-montmorillonite was matched most frequently to the spectral absorption features in 2-μm (∼2000–2500 nm) wavelengths, while goethite occurred often at 1-μm (∼400–1000 nm) wavelengths. The latter is related to limonitic iron-staining in and around oxidized zones of the uranium roll front as described in previous papers. Rocks of the Jackson Group differed from those of the Catahoula, Oakville and Goliad units in that the former exhibited spectral features we interpret as being due to the presence of lignite-bearing mudstone layers. Goliad rocks exhibit spectral features related to dolomite, gypsum, anhydrite, and an unidentified green clay mineral that is possibly glauconite. Jackson Group rocks also exhibit weak but well-resolved absorption features at 964 and 1157 nm related to either or both zeolite minerals clinoptilolite and heulandite. These zeolite minerals and a few spectra exhibiting hydrous silica absorption features are indicative of alteration of volcanic glass in tuffaceous mudstone and claystone layers. A few sample spectra exhibited strong absorption features at around 1135 nm related to the uranium mineral coffinite. Both the 1135 nm coffinite and 1157 nm zeolite absorption features overlap somewhat, potentially making them difficult to distinguish without additional hyperspectral field, laboratory or remote sensing data. The results of this study were compared to mixtures of minerals described for ore, gangue and alteration minerals in deposit models for sandstone-hosted uranium, sedimentary bentonite and sedimentary zeolite. Use of these spectra can help facilitate mapping of both waste materials from the legacy mining of the above commodities, as well as future exploration and resource assessment activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hubbard_hyperspectral_2024 Serial 178  
Permanent link to this record
 

 
Author Pree, T.A.D. url  openurl
  Title The politics of baselining in the Grants uranium mining district of northwestern New Mexico Type Journal Article
  Year 2020 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 268 Issue Pages 110601  
  Keywords (up) Critical stakeholder analysis, Environmental cleanup, Environmental monitoring, Mining reclamation/remediation/restoration, Politics of baselining  
  Abstract During the second half of the twentieth century, northwestern New Mexico served as the primary production site for one of the world’s largest nuclear arsenals. From 1948 to 1970 the “Grants uranium district” provided almost half of the total uranium ore accumulated by the United States federal government for the production of nuclear weapons, in addition to becoming a national source for commercial nuclear energy from the late 1960s to the early 1990s. By the twenty-first century, after a prolonged period of economic decline that began in the late 1970s, all uranium mining and milling in New Mexico had ceased, leaving a legacy of environmental health impacts. What was once referred to as “The Uranium Capital of the World” now encompasses over a thousand abandoned uranium mines and seven massive uranium mill tailings piles, which are associated with airborne and soil contamination as well as groundwater plumes of uranium and other contaminants of concern, in a landscape that has been fractured by underground mine workings and punctured by thousands of exploratory boreholes. This article presents an ethnographic study of the diverse forms of expertise involved in monitoring and managing the mine waste and mill tailings. Drawing from over two years of ethnographic research, I describe the relationship between different stakeholders from local communities, government agencies, and transnational mining corporations as they deliberate about the possibility of cleaning up the former mining district. My thesis is that the possibility of cleaning up the Grants district hinges on the “politics of baselining”—a term I introduce to describe the relationship between stakeholders and their competing environmental models and hydrogeological theories; each accounts for a different geological past prior to mining that can be deemed “natural,” as the background against which to measure the anthropogenic impacts from mining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pree_politics_2020 Serial 151  
Permanent link to this record
 

 
Author Gimeno, M.J.; Tullborg, E.-L.; Nilsson, A.-C.; Auqué, L.F.; Nilsson, L. url  openurl
  Title Hydrogeochemical characterisation of the groundwater in the crystalline basement of Forsmark, the selected area for the geological nuclear repositories in Sweden Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 624 Issue Pages 129818  
  Keywords (up) Crystalline bedrock, Deep geological repository, Glacial meltwater intrusion, Groundwater mixing, Hydrogeochemical model, Nuclear waste disposal  
  Abstract Numerous groundwater analyses from the crystalline bedrock in the Forsmark area have been performed between 2002 and 2019, together with thorough geological, geophysical, and hydrogeological studies, within the site investigations carried out by the Swedish Nuclear Fuel and Waste Management Company. The groundwater samples have been taken from boreholes down to ≈ 1000 m and the analysis include major- and trace-elements, stable and radiogenic isotopes, gases and microbes. The chemical and isotopic composition of these groundwaters evidences the presence of non-marine brackish to saline groundwaters with very long residence times (many hundreds of thousands of years) and a series of complex mixing events resulting from the recharge of different waters over time: glacial meltwaters, probably from different glaciations of which the latest culminated some 20,000 years ago, and marine waters from the Baltic starting some 7000 years ago. Later, meteoric water and present Baltic Sea water have recharged in different parts of the upper 100 m. These mixing events have also triggered chemical and microbial reactions that have conditioned some of the important groundwater parameters and, together with the structural complexity of the area, they have promoted a heterogeneous distribution of groundwater compositions in the bedrock. Due to these evident differences in chemistry, residence time and origin of the groundwater, several groundwater types were defined in order to facilitate the visualisation and communication. The differentiation (linked to the paleohydrological history of the area) was based on Cl concentration, Cl/Mg ratio (marine component), and δ18O value (glacial component). The work presented in this paper increases the understanding of the groundwater evolution in fractured and compartmentalised aquifers where mixing processes are the most important mechanisms. The model proposed to characterise the present groundwater system of the Forsmark area will also help to predict the future hydrogeochemical behaviour of the groundwater system after the construction of the repositories for the nuclear wastes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gimeno_hydrogeochemical_2023 Serial 137  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: