|   | 
Details
   web
Records
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication (up) Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume Issue Pages 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication (up) Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume Issue Pages 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265
Permanent link to this record
 

 
Author Singh, A.; Patel, S.; Bhadani, V.; Kumar, V.; Gaurav, K.
Title AutoML-GWL: Automated machine learning model for the prediction of groundwater level Type Journal Article
Year 2024 Publication (up) Engineering Applications of Artificial Intelligence Abbreviated Journal
Volume 127 Issue Pages 107405
Keywords AutoML, Bayesian optimisation, Groundwater, Machine learning
Abstract Predicting groundwater levels is pivotal in curbing overexploitation and ensuring effective water resource governance. However, groundwater level prediction is intricate, driven by dynamic nonlinear factors. To comprehend the dynamic interaction among these drivers, leveraging machine learning models can provide valuable insights. The drastic increase in computational capabilities has catalysed a substantial surge in the utilisation of machine learning-based solutions for effective groundwater management. The performance of these models highly depends on the selection of hyperparameters. The optimisation of hyperparameters is a complex process that often requires application-specific expertise for a skillful prediction. To mitigate the challenge posed by hyperparameter tuning’s problem-specific nature, we present an innovative approach by introducing the automated machine learning (AutoML-GWL) framework. This framework is specifically designed for precise groundwater level mapping. It seamlessly integrates the selection of best machine learning model and adeptly fine-tunes its hyperparameters by using Bayesian optimisation. We used long time series (1997-2018) data of precipitation, temperature, evaporation, soil type, relative humidity, and lag of groundwater level as input features to train the AutoML-GWL model while considering the influence of Land Use Land Cover (LULC) as a contextual factor. Among these input features, the lag of groundwater level emerged as the most relevant input feature. Once the model is trained, it performs well over the unseen data with a strong correlation of coefficient (R = 0.90), low root mean square error (RMSE = 1.22), and minimal bias = 0.23. Further, we compared the performance of the proposed AutoML-GWL with sixteen benchmark algorithms comprising baseline and novel algorithms. The AutoML-GWL outperforms all the benchmark algorithms. Furthermore, the proposed algorithm ranked first in Friedman’s statistical test, confirming its reliability. Moreover, we conducted a spatial distribution and uncertainty analysis for the proposed algorithm. The outcomes of this analysis affirmed that the AutoML-GWL can effectively manage data with spatial variations and demonstrates remarkable stability when faced with small uncertainties in the input parameters. This study holds significant promise in revolutionising groundwater management practices by establishing an automated framework for simulating groundwater levels for sustainable water resource management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-1976 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ singh_automl-gwl_2024 Serial 168
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S.
Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
Year 2020 Publication (up) Environmental Advances Abbreviated Journal
Volume 2 Issue Pages 100020
Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium
Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-7657 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127
Permanent link to this record
 

 
Author Tujchneider, O.; Christelis, G.; Gun, J.V. der
Title Towards scientific and methodological innovation in transboundary aquifer resource management Type Journal Article
Year 2013 Publication (up) Environmental Development Abbreviated Journal
Volume 7 Issue Pages 6-16
Keywords Communication, Cooperation, Holistic methodological approach, Science, Transboundary aquifer management
Abstract Groundwater is both an invaluable and a vulnerable resource. Aquifer resources management, aiming at the responsible exploitation and adequate protection of the groundwater resources, is therefore of key importance and has to be based on sound hydrological, environmental, economic and social principles. Aquifer-wide groundwater projects are carried out to collect the required area-specific information, to understand ongoing processes, to identify the management issues to be addressed and to develop an adequate management strategy and action plan. The quality of the project results depends to a large extent on the science and methodologies adopted in the design and used during the implementation of the projects. In this context, a project was carried out recently to analyse the scientific aspects of—among others—the transboundary aquifer projects within the IW: Portfolio of the Global Environmental Facility (GEF) and to make recommendations for scientific strengthening and innovation. This paper presents the main outcomes of this analysis. In order to accomplish groundwater resources management goals in the case of transboundary aquifers, a balanced joint strategy is needed. Analysis of documentation on completed and on-going transboundary aquifer projects has shown a wide range of scientific activities that contribute positively to the development of such strategies. This analysis has also identified options for increasing the positive impacts of science on strategy development; some of these options have been pioneered already and deserve wider application other ones are relatively new. Important options are: integrating transboundary aquifer resource management in a wider environmental–socio-economical context (holistic approach); exploring causal chains to better understand the processes of change of groundwater resources; using this improved understanding for optimising groundwater assessment and monitoring programmes; and adaptive management. In addition, to obtain maximum benefit of the scientific results there is a general need to promote effective communication at all levels, between the scientific community and policy-/decision makers, as well as with the local community who have a major role to play in the use and conservation of the resources. All of this should be accompanied by the harmonisation of the legal instruments and co-operation agreements between countries and the communities involved. Two case studies, one in South America and one in Southern Africa, are added as examples of the setting and approach of the analysed transboundary aquifer projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-4645 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tujchneider_towards_2013 Serial 105
Permanent link to this record
 

 
Author Rossetto, R.; Filippis, G.D.; Borsi, I.; Foglia, L.; Cannata, M.; Criollo, R.; Vázquez-Suñé, E.
Title Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management Type Journal Article
Year 2018 Publication (up) Environmental Modelling & Software Abbreviated Journal
Volume 107 Issue Pages 210-230
Keywords Free and Open Source Software, FREEWAT, Groundwater management, ICT, MODFLOW, QGIS
Abstract Integrating advanced simulation techniques and data analysis tools in a freeware Geographic Information System (GIS) provides a valuable contribution to the management of conjunctive use of groundwater (the world’s largest freshwater resource) and surface-water. To this aim, we describe here the FREEWAT (FREE and open source software tools for WATer resource management) platform. FREEWAT is a free and open source, QGIS-integrated interface for planning and management of water resources, with specific attention to groundwater. The FREEWAT platform couples the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. The FREEWAT environment allows storage of large spatial datasets, data management and visualization, and running of several distributed modelling codes (mainly belonging to the MODFLOW family). It simulates hydrologic and transport processes, and provides a database framework and visualization capabilities for hydrochemical analysis. Examples of real case study applications are provided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ rossetto_integrating_2018 Serial 92
Permanent link to this record
 

 
Author Orloff, K.G.; Mistry, K.; Charp, P.; Metcalf, S.; Marino, R.; Shelly, T.; Melaro, E.; Donohoe, A.M.; Jones, R.L.
Title Human exposure to uranium in groundwater Type Journal Article
Year 2004 Publication (up) Environmental Research Abbreviated Journal
Volume 94 Issue 3 Pages 319-326
Keywords Groundwater, Human exposure, Uranium, Urine
Abstract High concentrations of uranium (mean=620μg/L) were detected in water samples collected from private wells in a residential community. Based on isotopic analyses, the source of the uranium contamination appeared to be from naturally occurring geological deposits. In homes where well water concentrations of uranium exceeded the drinking water standard, the residents were advised to use an alternate water source for potable purposes. Several months after the residents had stopped drinking the water, urine samples were collected and tested for uranium. Elevated concentrations of uranium (mean=0.40μg/g creatinine) were detected in urine samples, and 85 percent of the urine uranium concentrations exceeded the 95th percentile concentration of a national reference population. Urine uranium concentrations were positively correlated with water uranium concentrations, but not with the participants’ ages or how long they had been drinking the water. Six months later, a second urine sample was collected and tested for uranium. Urine uranium concentrations decreased in most (63 percent) of the people. In those people with the highest initial urine uranium concentrations, the urine levels decreased an average of 78 percent. However, urine uranium concentrations remained elevated (mean=0.27μg/g), and 87 percent of the urine uranium concentrations exceeded the 95th percentile concentration of the reference population. The results of this investigation demonstrated that after long-term ingestion of uranium in drinking water, elevated concentrations of uranium in urine could be detected up to 10 months after exposure had stopped.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ orloff_human_2004 Serial 136
Permanent link to this record
 

 
Author Androvitsanea, A.; Fawzy, M.; Fuchs, J.; Külls, C.; Fahlbusch, H.; Heiden, J.
Title Hydrologische Bedingungen im Heraion von Samos vom 12. bis 8. Jh. v. Chr. und ihre Bedeutung für die wasserbauliche Infrastruktur Type Journal Article
Year 2018 Publication (up) Environmental Water Engineering Abbreviated Journal
Volume 1 Issue 1 Pages 1-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Androvitsanea2018hydrologische Serial 17
Permanent link to this record
 

 
Author Rehm-Berbenni, C.; Druta A.; Åberg, G.; Neguer J.; Külls, C.; Patrizi, G.; Pacha, T.; Kienzle, P.; Bugini, R.; Fiore, M.G.
Title Isotope Technologies Applied to the Analysis of Ancient Roman Mortars Type Book Whole
Year 2005 Publication (up) European Commission Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Results of the CRAFT Project EVK4 CT-2001-30004
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 73
Permanent link to this record
 

 
Author Benites Lazaro, L.L.; Bellezoni, R.; Puppim de Oliveira, J.; Jacobi, P.R.; Giatti, L.
Title Ten Years of Research on the Water-Energy-Food Nexus: An Analysis of Topics Evolution Type Journal Article
Year 2022 Publication (up) Frontiers in Water Abbreviated Journal
Volume 4 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ article Serial 86
Permanent link to this record