toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C. url  openurl
  Title Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types Type Journal Article
  Year 2020 Publication Applied Geochemistry Abbreviated Journal  
  Volume (down) 123 Issue Pages 104780  
  Keywords Isotope hydrology, Hydrogeochemical modelling, Hydrochemistry, Kargiotis, Troodos  
  Abstract The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Cyprus Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Christofi2020104780 Serial 76  
Permanent link to this record
 

 
Author Salbu, B. url  openurl
  Title Preface: uranium mining legacy issue in Central Asia Type Journal Article
  Year 2013 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume (down) 123 Issue Pages 1-2  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ salbu_preface_2013 Serial 125  
Permanent link to this record
 

 
Author Mathuthu, M.; Uushona, V.; Indongo, V. url  openurl
  Title Radiological safety of groundwater around a uranium mine in Namibia Type Journal Article
  Year 2021 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume (down) 122 Issue Pages 102915  
  Keywords Groundwater, ICP-MS, Radiological hazard, Uranium mining  
  Abstract Uranium mining activities produce the main element used in nuclear energy production. However, it can also negatively affect the environment including groundwater by release of residues or effluent containing radioactive elements. The study investigated the concentration and radiological hazard of uranium in groundwater and seepage water from the tailings of a uranium mine in Namibia. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to assess the concentration of uranium in the groundwater and seepage water and the radiological hazards were determined. The radiological hazard indices Radium equivalent activity (Raeq), Absorbed dose (D), Annual Effective Dose equivalent (AEDE), External hazard index (Hex) and Internal hazard index (Hin) were determined and compared to limits recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The calculated average value of D and Hin of groundwater is 108.11nGyh−1 and 1.26, respectively and are above the UNSCEAR values (55 nGyh−1 and 1). Further, the average values of Raeq, AEDE and Hex were below the recommended values. The isotopic ratio of uranium radionuclides in groundwater indicates that the uranium in the sampled groundwater is below 1 suggesting it is not natural uranium present but a possible contamination from the mine seepage. The radiological hazard parameters of the seepage water were above the recommended values and thus pose a radiation risk to human and environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mathuthu_radiological_2021 Serial 160  
Permanent link to this record
 

 
Author Gardiner, J.; Thomas, R.B.; Phan, T.T.; Stuckman, M.; Wang, J.; Small, M.; Lopano, C.; Hakala, J.A. url  openurl
  Title Utilization of produced water baseline as a groundwater monitoring tool at a CO2-EOR site in the Permian Basin, Texas, USA Type Journal Article
  Year 2020 Publication Applied Geochemistry Abbreviated Journal  
  Volume (down) 121 Issue Pages 104688  
  Keywords CO storage, Enhanced oil recovery, Geochemical baseline, Groundwater monitoring, Produced water, Solubility trapping  
  Abstract Carbon dioxide (CO2) enhanced oil recovery (EOR) provides a pathway for economic reuse and storage of CO2, a greenhouse gas. One challenge with this practice is ensuring CO2 injection does not result in target reservoir fluids migrating into overlying shallow (\textless1000 m) groundwater formations. Effective monitoring for leakage from storage formations could involve measuring sensitive chemical indicators in overlying groundwater units and within the producing formation itself for evidence of deviation from an initial state. In this study, produced waters and overlying groundwaters were monitored over a five-year period to evaluate which geochemical signals may be useful to ensure that oilfield produced waters did not impact overlying groundwaters. During this five-year period, a mature carbonate oil reservoir in the Permian Basin transitioned from a waterflooding operation to a water-alternating-gas injection (WAG), in which the formation was flooded with CO2 and various mixtures of produced water. Significant increases in dissolved inorganic constituents [alkalinity, TDS, Na+, Cl−, SO42−] were observed in produced waters following CO2 injection; however, carbonate reservoir dissolution-precipitation reactions appear to be minimal and injected CO2 appears to be stored via solubility trapping. Although there are statistically significant geochemical variations following CO2 injection, applying isometric log-ratios to certain parameters establishes a narrow range for post-CO2 injection produced waters. This narrow range can be considered a baseline for post-CO2 injection produced waters; this baseline can be utilized to monitor overlying local groundwaters for produced water intrusion. Additionally, certain parameters [Na+, Ca2+, K+, Cl−, alkalinity, and TDS] display large concentration disparities between produced water and overlying groundwaters; these parameters would be sensitive indicators of produced water intrusion into overlying groundwaters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gardiner_utilization_2020 Serial 171  
Permanent link to this record
 

 
Author Saini, K.; Singh, P.; Bajwa, B.S. url  openurl
  Title Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India Type Journal Article
  Year 2016 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume (down) 118 Issue Pages 196-202  
  Keywords Carcinogenic, Groundwater, LED fluorimeter, Uranium  
  Abstract LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30µgl−1 as well as AERB proposed limit of 60µgl−1. Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60µgl−1. Average value observed in SW Punjab is around 3–4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ saini_comparative_2016 Serial 130  
Permanent link to this record
 

 
Author Uugulu, S.; Wanke, H. url  openurl
  Title Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia Type Journal Article
  Year 2020 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume (down) 116 Issue Pages 102844  
  Keywords Chloride mass balance, Groundwater recharge, Isotopic values, Precipitation gradient  
  Abstract The quantification of groundwater resources is essential especially in water scarce countries like Namibia. The chloride mass balance (CMB) method and isotopic composition were used in determining groundwater recharge along a precipitation gradient at three sites, namely: Tsumeb (600 mm/a precipitation); Waterberg (450 mm/a precipitation) and Kuzikus/Ebenhaezer (240 mm/a precipitation). Groundwater and rainwater were collected from year 2016–2017. Rainwater was collected monthly while groundwater was collected before, during and after rainy seasons. Rainwater isotopic values for δ18O and δ2H range from −10.70 to 6.10‰ and from −72.7 to 42.1‰ respectively. Groundwater isotopic values for δ18O range from −9.84 to −5.35‰ for Tsumeb; from −10.85 to −8.60‰ for Waterberg and from −8.24 to −1.56‰ for Kuzikus/Ebenhaezer, while that for δ2H range from −65.6 to −46.7‰ for Tsumeb; −69.4 to −61.2‰ for Waterberg and −54.2 to −22.7‰ for Kuzikus/Ebenhaezer. Rainwater scatters along the GMWL. Rainwater collected in January, February and March are more depleted in heavy isotopes than those in November, December, April and May. Waterberg groundwater plots on the GMWL which indicates absence of evaporation. Tsumeb groundwater plots on/close to the GMWL with an exception of groundwater from the karst Lake Otjikoto which is showing evaporation. Groundwater from Kuzikus/Ebenhaezer shows an evaporation effect, probably evaporation occurs during infiltration since it is observed in all sampling seasons. All groundwater from three sites plot in the same area with rainwater depleted in stable isotopic values, which could indicates that recharge only take place during January, February and March. CMB method revealed that Waterberg has the highest recharge rate ranging between 39.1 mm/a and 51.1 mm/a (8.7% – 11.4% of annual precipitation), Tsumeb with rates ranging from 21.1 mm/a to 48.5 mm/a (3.5% – 8.1% of annual precipitation), and lastly Kuzikus/Ebenhaezer from 3.2 mm/a to 17.5 mm/a (1.4% – 7.3% of annual precipitation). High recharge rates in Waterberg could be related to fast infiltration and absence of evaporation as indicated by the isotopic ratios. Differences in recharge rates cannot only be attributed to the precipitation gradient but also to the evaporation rates and the presence of preferential flow paths. Recharge rates estimated for these three sites can be used in managing the savannah aquifers especially at Kuzikus/Ebenhaezer where evaporation effect is observed that one can consider rain harvesting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uugulu_estimation_2020 Serial 99  
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C. url  doi
openurl 
  Title Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach Type Journal Article
  Year 2020 Publication Applied Geochemistry Abbreviated Journal  
  Volume (down) 114 Issue Pages 104524  
  Keywords geochemistry  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Pergamon Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Christofi2020hydrochemical Serial 13  
Permanent link to this record
 

 
Author Pereira, A.J.S.C.; Neves, L.J.P.F. url  openurl
  Title Estimation of the radiological background and dose assessment in areas with naturally occurring uranium geochemical anomalies—a case study in the Iberian Massif (Central Portugal) Type Journal Article
  Year 2012 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume (down) 112 Issue Pages 96-107  
  Keywords Background, Dose assessment, Geochemical anomalies, Mine remediation, Natural radioactivity, Uranium  
  Abstract Naturally occurring uranium geochemical anomalies, representative of the several thousand recognized in the Portuguese section of the Iberian Massif and outcropping in three target areas with a total of a few thousand square metres, were subjected to a detailed study (1:1000 scale) to evaluate the radiological health-risk on the basis of a dose assessment. To reach this goal some radioactive isotopes from the uranium, thorium and potassium radioactive series were measured in 52 samples taken from different environmental compartments: soils, stream sediments, water, foodstuff (vegetables) and air; external radiation was also measured through a square grid of 10×10m, with a total of 336 measurements. The results show that some radioisotopes have high activities in all the environmental compartments as well as a large variability, namely for those of the uranium decay chain, which is a common situation in the regional geological setting. Isotopic disequilibrium is also common and led to an enrichment of several isotopes in the different pathways, as is the case of 226Ra; maximum values of 1.76BqL−1 (water), 986Bqkg−1 (soils) and 18.9Bqkg−1 (in a turnip sample) were measured. On the basis of a realistic scenario combined with the experimental data, the effective dose from exposure to ionizing radiation for two groups of the population (rural and urban) was calculated; the effective dose is variable between 8.0 and 9.5mSvyear−1, which is 3–4 times higher than the world average. Thus, the radiological health-risk for these populations could be significant and the studied uranium anomalies must be taken into account in the assessment of the geochemical background. The estimated effective dose can also be used as typical of the background of the Beiras uranium metalogenetic province and therefore as a “benchmark” in the remediation of the old uranium mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pereira_estimation_2012 Serial 129  
Permanent link to this record
 

 
Author Shams, A. url  openurl
  Title A rediscovered-new ‘Qanat’ system in the High Mountains of Sinai Peninsula, with Levantine reflections Type Journal Article
  Year 2014 Publication Journal of Arid Environments Abbreviated Journal  
  Volume (down) 110 Issue Pages 69-74  
  Keywords Foggara, Irrigation, Levant, Qanat, Sinai Peninsula  
  Abstract Since the Achaemenid Empire in 532–332 BCE, the ‘Qanat’ became the central irrigation system in the arid and semi-arid lands. Several terms are used for ‘Qanat’ in different regions, including the Karez, Qanat, Falaj type Daudi, Qanat Romani, Fuqara (Foggara), or Khettara as known in Central Asia, Persia, Southeast Arabia, Levant, North Africa, or Morocco respectively. Typically, the ground, spring or surface water (i.e. seasonal floods or river-fed) sources feed similar irrigation system. Based on thirteen years of extensive survey and analysis work (i.e. Sinai Peninsula Research 2000–2013 CE), this paper presents a rediscovered-new Qanat system in the High Mountains of Sinai Peninsula (i.e. UNESCO World Heritage Site ‘WHS’ no. 954) under chronological open question with Levantine reflections. In 1970s CE, the present Sinaitic site of Farsh Abu A’lwan or the anciently known Farsh Shamma’a was archaeologically surveyed without a direct reference to the Qanat system in-situ. Scientifically, it is an argumentative and unique Qanat system in terms of chronology, location (region), site (local-setting), water source, size and household utility. It is the only discovered ‘Qanat’ across the Sinai, connecting the Near East and North Africa.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Shams201469 Serial 248  
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Paces, J.B.; Zielinski, R.A.; Breit, G.N. url  openurl
  Title Calcrete uranium deposits in the Southern High Plains, USA Type Journal Article
  Year 2019 Publication Ore Geology Reviews Abbreviated Journal  
  Volume (down) 109 Issue Pages 50-78  
  Keywords Calcrete, Carnotite, Finchite, Geochemistry, Uranium, Vanadium  
  Abstract The Southern High Plains (SHP) is a new and emerging U.S. uranium province. Here, uranyl vanadates form deposits in Pliocene to Pleistocene sandstone, dolomite, and limestone. Fifteen calcrete uranium occurrences are identified; two of these, the Buzzard Draw and Sulfur Springs Draw deposits, have combined in-place resources estimated at about 4 million pounds of U3O8. Ore minerals carnotite and finchite are hosted in dolomite at the Sulfur Springs Draw deposit, with accessory fluorite, celestine, smectite/illite, autunite, and strontium carbonate. Host carbonate at the Sulfur Springs Draw deposit is ∼190 ka and mineralization mobilized as recently as 3.8 ka. Ash collected near the deposit is 631 ka and erupted from the Yellowstone caldera complex. The Triassic Dockum Group that contains sandstone-hosted uranium deposits throughout the region and underlies the SHP is a potential source for uranium and vanadium. Regional uplift and dissection reintroduced oxygenated groundwater into the Dockum Group, mobilizing uranium. Additional uranium may have been contributed to groundwater by weathering of volcanic ash in Pliocene and Pleistocene host rocks. The locations of the uranium occurrences are mostly in modern drainage systems in the southeast portion of the SHP. Modelling of modern groundwater in the SHP carried out in a parallel study shows that a single fluid could form carnotite through evaporation, and that fluids of the requisite composition are more prevalent in the southern portion of the SHP. The southeastern portion of the SHP hosts more uranium occurrences due to a variety of factors including (1) upward transport of groundwater and connectivity between source and host rock, (2) higher uranium and vanadium content of groundwater, (3) higher rates of groundwater recharge in this region to drive the mineralizing system, and (4) shallower groundwater facilitating surface evaporation. Ongoing erosion of host rocks challenges preservation of deposits and may limit their size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hall_calcrete_2019 Serial 124  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: