toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jamali, B.; Bach, P.M.; Deletic, A. url  openurl
  Title Rainwater harvesting for urban flood management – An integrated modelling framework Type Journal Article
  Year 2020 Publication Water Research Abbreviated Journal  
  Volume 171 Issue Pages 115372  
  Keywords Rainwater harvesting tanks, Urban flood simulation, Rapid flood inundation model, Urban flood risk mitigation  
  Abstract It is well known that rainwater harvesting (RWH) can augment water supply and reduce stormwater pollutant discharges. Due to the lack of continuous 2D modelling of urban flood coverage and its associated damage, the ability of RWH to reduce urban flood risks has not been fully evaluated. Literature suggests that small distributed storage spaces using RWH tanks will reduce flood damage only during small to medium flooding events and therefore cumulative assessment of their benefits is needed. In this study we developed a new integrated modelling framework that implements a semi-continuous simulation approach to investigate flood prevention and water supply benefits of RWH tanks. The framework includes a continuous mass balance simulation model that considers antecedent rainfall conditions and water demand/usage of tanks and predicts the available storage prior to each storm event. To do so, this model couples a rainfall-runoff tank storage model with a detailed stochastic end-use water demand model. The available storage capacity of tanks is then used as a boundary condition for the novel rapid flood simulation model. This flood model was developed by coupling the U.S. EPA Storm Water Management Model (SWMM) to the Cellular-Automata Fast Flood Evaluation (CA-ffé) model to predict the inundation depth caused by surcharges over the capacity of the drainage network. The stage-depth damage curves method was used to calculate time series of flood damage, which are then directly used for flood risk and cost-benefit analysis. The model was tested through a case study in Melbourne, using a recorded rainfall time series of 85 years (after validating the flood model against 1D-2D MIKE-FLOOD). Results showed that extensive implementation of RWH tanks in the study area is economically feasible and can reduce expected annual damage in the catchment by up to approximately 30 percent. Availability of storage space and temporal distribution of rainfall within an event were important factors affecting tank performance for flood reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jamali2020115372 Serial 239  
Permanent link to this record
 

 
Author Tamagnone, P.; Comino, E.; Rosso, M. url  openurl
  Title Rainwater harvesting techniques as an adaptation strategy for flood mitigation Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 586 Issue Pages 124880  
  Keywords Rainwater harvesting techniques, Extreme rainfall, Runoff, Hydraulic modelling, Flood mitigation, Arid and semi-arid climate  
  Abstract The development of adaptation and mitigation strategies to tackle anthropic and climate changes impacts is becoming a priority in drought-prone areas. This study examines the capabilities of indigenous rainwater harvesting techniques (RWHT) to be used as a viable solution for flood mitigation. The study analyses the hydraulic performance of the most used micro-catchment RWHT in sub-Saharan regions, in terms of flow peak reduction (FPR) and volume reduction (VR) at the field and basin scale. Parametrized hyetographs were built to replicate the extreme precipitations that strike Sahelian countries during rainy seasons. 2D hydrodynamic simulations showed that half-moons placed with a staggered configuration (S-HM) have the best performances in reducing runoff. At the field scale, S-HM showed a remarkable FPR of 77% and a VR of 70% in case of extreme rainfall. Instead at the basin scale, in which only 5% of the surface was treated, 13% and 8% respectively for FPR and VR were obtained. In addition, the reduction of the runoff coefficient (Rc) between the different configuration was analyzed. The study critically evaluates hydraulic performances of the different techniques and shows how pitting practices cannot guarantee high performance in case of extreme precipitations. These results will enrich the knowledge of the hydraulic behavior of RWHT; aspect marginally investigated in the scientific literature. Moreover, this study presents the first scientific application of HEC-RAS as a rainfall-runoff model. Despite some limitations, this model has the effective feature of using very high-resolution topography as input for hydraulic simulations. The results presented in this study should encourage stakeholders to upscale the use of RWHT in order to lessen the flood hazard and land degradation that oppresses arid and semi-arid areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tamagnone2020124880 Serial 240  
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K. url  openurl
  Title Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
  Year 2020 Publication Water Science and Engineering Abbreviated Journal  
  Volume 13 Issue 2 Pages 95-105  
  Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth  
  Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Akter202095 Serial 247  
Permanent link to this record
 

 
Author Naghedifar, S.M.; Ziaei, A.N.; Naghedifar, S.A.; Ansari, H. url  openurl
  Title A new model for simulation of collection and conveyance sections of Qanat Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 590 Issue Pages 125218  
  Keywords Richards’ equation, Saint-Venant equation, Numerical modeling, Qanat-aquifer system  
  Abstract In this paper, a new numerical model has been developed for simulation of Qanat-aquifer system. This model employs quasi-3D mixed-form of Richards’ equation and 1D fully-hydrodynamic form of Saint-Venant equations to simulate subsurface and overland flow, respectively. In order to handle non-orthogonal grids, subsurface flow module benefits from coordinate transformation technique. Using the above-mentioned governing equations, the presented model is able to simulate water flow inside both collection and conveyance sections of the gallery as well as dynamics of groundwater and vadose zone from impermeable bed rock to the soil-air interface. Since measured data corresponding to the hydraulics of Qanats is scarce, the overland and subsurface modules have been validated with analytical, numerical and experimental benchmarks in the literature. Subsequently, the model was employed to simulate ten different hypothetical aquifer-Qanat systems with different properties including the depth of groundwater aquifer, roughness of the gallery and saturated hydraulic conductivity of the gallery-aquifer boundary and the influence of each the parameters was monitored on the outflow rate at the appearance point of each Qanat. Furthermore, the advance of water inside two initially dry galleries were simulated at different time levels up to steady state. Eventually, the streamlines have been shown at the steady state for two Qanat-aquifer systems. Although, the presented study sheds light on some aspects of Qanat-aquifer hydraulics, the validation of the presented model with in-lab or on-field data remains ongoing for the future researches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Naghedifar2020125218 Serial 254  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title Semi-analytical solutions of discharge variation of a qanat in an unconfined aquifer subjected to general areal recharge and nearby pumping well discharge Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 584 Issue Pages 124691  
  Keywords Analytical solution, Laplace domain, Screen segmentation, Qanat, Areal recharge, Constant head  
  Abstract Qanat is a type of drain that extract water from aquifers by gravity. Significant amount of fresh water used in Middle East and other parts of the world are supplied by qanats. Despite their importance, discharge variation of these type of wells received almost no attention. The aim of this research is to obtain a Laplace domain solution of discharge variation of a qanat installed in an anisotropic unconfined aquifer subjected to arbitrary areal recharge and nearby pumping well(s) discharge. A new semi-analytical solution of drawdown is obtained first to implement the effects of arbitrary areal recharge and nearby pumping well(s) using the principle of superposition. Then, the discharge variation solution of the qanat is obtained from the drawdown solution. To establish a constant-head boundary condition at the qanat periphery, the qanat is discretized into several segments. The results of this study are presented in dimensionless discharge-dimensionless time curves. The effects of hydraulic as well as geometric parameters on the discharge variation of the qanat due to arbitrary areal recharge, falling of water table from its initial position and discharge of nearby wells are explored. We also investigate the influences of distance and screen depth and location of the nearby well on the discharge variation of the qanat. The results of this study can be utilized for multiple purposes: 1) to predict discharge of qanat in response to rainfall and nearby pumping well(s); 2) to estimate the aquifer parameters using hydrograph of the qanat; 3) to determine optimal location and pumping pattern of the nearby wells to minimize their influences on the discharge of the qanat; 4) to calculate water budget of aquifers drained by a qanat. The equation presented in this work can also be used to estimate discharge of a horizontal drain installed in cropland subjected to arbitrary irrigation pattern.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2020124691 Serial 261  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: