toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bonnetti, C.; Zhou, L.; Riegler, T.; Brugger, J.; Fairclough, M. url  openurl
  Title (up) Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle Type Journal Article
  Year 2020 Publication Geochimica et Cosmochimica Acta Abbreviated Journal  
  Volume 282 Issue Pages 113-132  
  Keywords Activity cycle, Pyrite composition, Roll front uranium deposits, S isotope and trace element fractionation  
  Abstract Complex pyrite textures associated with large changes in isotopic and trace element compositions are routinely assumed to be indicative of multi-faceted processes involving multiple fluid and sulfur sources. We propose that the features of ore-stage pyrite from roll front deposits across the world, revealed in exquisite detail via high-resolution trace element mapping by LA-ICP-MS, reflect the dynamic internal evolution of the biogeochemical processes responsible for sulfate reduction, rather than externally driven changes in fluid or sulfur sources through time. Upon percolation of oxidizing fluids into the reduced host-sandstones, roll front systems become self-organized, with a systematic reset of their activity cycle after each translation stage of the redox interface down dip of the aquifer. Dominantly reducing conditions at the redox interface favor the formation of biogenic framboidal pyrite (δ34S from −30.5 to −12.5‰) by bacterial sulfate reduction and the genesis of the U mineralization. As the oxidation front advances, oxidation of reduced sulfur minerals induces an increased supply of sulfate and metals in solution to the bacterial sulfate reduction zone that has similarly advanced down the flow gradient. Hence, this stage is marked by increased rates of the bacterial sulfate reduction associated with the crystallization of variably As-Co-Ni-Mo-enriched concentric pyrite (up to 10,000′s of ppm total trace contents) with moderately negative δ34S values (from −13.7 to −7.5‰). A final stage of pyrite cement with low trace element contents and heavier δ34S signature (from −6.9 to +18.8‰) marks the end of the roll front activity cycle and the transition from an open to a predominantly closed system behavior (negligible advection of fresh sulfate). Blocky pyrite cement is formed using the remaining sulfate, which now becomes quickly heavy according to a Rayleigh isotope fractionation process. This ends the cycle by depleting the nutrient supplies for the sulfate-reducing bacteria and cementing pore spaces within the host sandstone, effectively restricting fluid infiltration. This internally-driven roll front activity cycle results in systematic, large S isotope and trace element fractionation. Ultimately, the long-time evolution of the basin and fluid sources control the metal endowment and evolution of the system; these events, however, are unlikely to be preserved by the roll front, as a direct result of its hydrodynamic nature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ bonnetti_large_2020 Serial 185  
Permanent link to this record
 

 
Author Tziritis, E.; Aschonitis, V.; Balacco, G.; Daras, P.; Doulgeris, C.; Fidelibus, M.D.; Gaubi, E.; Gueddari, M.; Güler, C.; Hamzaoui, F.; others openurl 
  Title (up) MEDSAL Project-Salinization of critical groundwater reserves in coastal Mediterranean areas: Identification, risk assessment and sustainable management with the use of integrated modelling and smart ICT tools Type Conference Article
  Year 2020 Publication EGU General Assembly Conference Abstracts Abbreviated Journal  
  Volume Issue Pages 2326  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tziritis2020medsal Serial 43  
Permanent link to this record
 

 
Author Su, X.; Liu, Z.; Yao, Y.; Du, Z. url  openurl
  Title (up) Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China Type Journal Article
  Year 2020 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 127 Issue Pages 103768  
  Keywords Geochemical composition, leach mining, Mineralogy, Ordos Basin, Sandstone-hosted uranium deposit  
  Abstract The Nalinggou–Daying uranium metallogenic belt is situated at the northern Ordos Basin, China. Petrographical, mineralogical and geochemical techniques were used to study the ore-bearing sandstones and host rocks in the Nalinggou–Daying uranium metallogenic belt. The present study shows that uranium minerals, i.e., coffinite, pitchblende, and brannerite, are mostly disseminated around pyrite and detrital particles. The ore-bearing sandstones are enriched in organic matter, with which this reductive environment influenced uranium leaching. The carbonate concentration of the uranium ores is markedly higher than that of the host rocks, and intense carbonatization occurs in the ore-bearing sandstones. In this case, the usage of the classical in-situ leach uranium mining technique by injecting H2SO4 + H2O2 solution produces calcium sulfate precipitate, which can lead to blocking of the ore-bearing strata. For this reason, laboratory and field uranium mining tests were conducted using CO2 + O2 in-situ leaching technology and were demonstrated to be successful, illustrating that this approach is technically feasible. Inhibiting ore bed blockage and increasing the amount of injected O2 are important for uranium leaching in this setting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ su_petrology_2020 Serial 120  
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K. url  openurl
  Title (up) Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
  Year 2020 Publication Water Science and Engineering Abbreviated Journal  
  Volume 13 Issue 2 Pages 95-105  
  Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth  
  Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Akter202095 Serial 247  
Permanent link to this record
 

 
Author Doulgeris, C.; Tziritis, E.; Pisinaras, V.; Panagopoulos, A.; Külls, C. openurl 
  Title (up) Prediction of seawater intrusion to coastal aquifers based on non-dimensional diagrams Type Conference Article
  Year 2020 Publication EGU Geophysical Abstracts Abbreviated Journal  
  Volume Issue Pages 4073  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Doulgeris2020prediction Serial 41  
Permanent link to this record
 

 
Author Jroundi, F.; Descostes, M.; Povedano-Priego, C.; Sánchez-Castro, I.; Suvannagan, V.; Grizard, P.; Merroun, M.L. url  openurl
  Title (up) Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: Insights regarding in situ recovery mining Type Journal Article
  Year 2020 Publication Science of The Total Environment Abbreviated Journal  
  Volume 721 Issue Pages 137758  
  Keywords Bacterial diversity, Bioremediation, In-situ recovery, Natural attenuation, Network analysis, Uranium  
  Abstract A uranium-mineralized sandy aquifer, planned for mining by means of uranium in situ recovery (U ISR), harbors a reservoir of bacterial life that may influence the biogeochemical cycles surrounding uranium roll-front deposits. Since microorganisms play an important role at all stages of U ISR, a better knowledge of the resident bacteria before any ISR actuations is essential to face environmental quality assessment. The focus here was on the characterization of bacteria residing in an aquifer surrounding a uranium roll-front deposit that forms part of an ISR facility project at Zoovch Ovoo (Mongolia). Water samples were collected following the natural redox zonation inherited in the native aquifer, including the mineralized orebody, as well as compartments located both upstream (oxidized waters) and downstream (reduced waters) of this area. An imposed chemical zonation for all sensitive redox elements through the roll-front system was observed. In addition, high-throughput sequencing data showed that the bacterial community structure was shaped by the redox gradient and oxygen availability. Several interesting bacteria were identified, including sulphate-reducing (e.g. Desulfovibrio, Nitrospira), iron-reducing (e.g. Gallionella, Sideroxydans), iron-oxidizing (e.g. Rhodobacter, Albidiferax, Ferribacterium), and nitrate-reducing bacteria (e.g. Pseudomonas, Aquabacterium), which may also be involved in metal reduction (e.g. Desulfovibrio, Ferribacterium, Pseudomonas, Albidiferax, Caulobacter, Zooglea). Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the bacterial genera, suggesting either shared/preferred environmental conditions or the performance of similar/complementary functions. As a whole, the bacterial community residing in each aquifer compartment would appear to define an ecologically functional ecosystem, containing suitable microorganisms (e.g. acidophilic bacteria) prone to promote the remediation of the acidified aquifer by natural attenuation. Assessing the composition and structure of the aquifer’s native bacteria is a prerequisite for understanding natural attenuation and predicting the role of bacterial input in improving ISR efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_profiling_2020 Serial 177  
Permanent link to this record
 

 
Author Jamali, B.; Bach, P.M.; Deletic, A. url  openurl
  Title (up) Rainwater harvesting for urban flood management – An integrated modelling framework Type Journal Article
  Year 2020 Publication Water Research Abbreviated Journal  
  Volume 171 Issue Pages 115372  
  Keywords Rainwater harvesting tanks, Urban flood simulation, Rapid flood inundation model, Urban flood risk mitigation  
  Abstract It is well known that rainwater harvesting (RWH) can augment water supply and reduce stormwater pollutant discharges. Due to the lack of continuous 2D modelling of urban flood coverage and its associated damage, the ability of RWH to reduce urban flood risks has not been fully evaluated. Literature suggests that small distributed storage spaces using RWH tanks will reduce flood damage only during small to medium flooding events and therefore cumulative assessment of their benefits is needed. In this study we developed a new integrated modelling framework that implements a semi-continuous simulation approach to investigate flood prevention and water supply benefits of RWH tanks. The framework includes a continuous mass balance simulation model that considers antecedent rainfall conditions and water demand/usage of tanks and predicts the available storage prior to each storm event. To do so, this model couples a rainfall-runoff tank storage model with a detailed stochastic end-use water demand model. The available storage capacity of tanks is then used as a boundary condition for the novel rapid flood simulation model. This flood model was developed by coupling the U.S. EPA Storm Water Management Model (SWMM) to the Cellular-Automata Fast Flood Evaluation (CA-ffé) model to predict the inundation depth caused by surcharges over the capacity of the drainage network. The stage-depth damage curves method was used to calculate time series of flood damage, which are then directly used for flood risk and cost-benefit analysis. The model was tested through a case study in Melbourne, using a recorded rainfall time series of 85 years (after validating the flood model against 1D-2D MIKE-FLOOD). Results showed that extensive implementation of RWH tanks in the study area is economically feasible and can reduce expected annual damage in the catchment by up to approximately 30 percent. Availability of storage space and temporal distribution of rainfall within an event were important factors affecting tank performance for flood reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jamali2020115372 Serial 239  
Permanent link to this record
 

 
Author Tamagnone, P.; Comino, E.; Rosso, M. url  openurl
  Title (up) Rainwater harvesting techniques as an adaptation strategy for flood mitigation Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 586 Issue Pages 124880  
  Keywords Rainwater harvesting techniques, Extreme rainfall, Runoff, Hydraulic modelling, Flood mitigation, Arid and semi-arid climate  
  Abstract The development of adaptation and mitigation strategies to tackle anthropic and climate changes impacts is becoming a priority in drought-prone areas. This study examines the capabilities of indigenous rainwater harvesting techniques (RWHT) to be used as a viable solution for flood mitigation. The study analyses the hydraulic performance of the most used micro-catchment RWHT in sub-Saharan regions, in terms of flow peak reduction (FPR) and volume reduction (VR) at the field and basin scale. Parametrized hyetographs were built to replicate the extreme precipitations that strike Sahelian countries during rainy seasons. 2D hydrodynamic simulations showed that half-moons placed with a staggered configuration (S-HM) have the best performances in reducing runoff. At the field scale, S-HM showed a remarkable FPR of 77% and a VR of 70% in case of extreme rainfall. Instead at the basin scale, in which only 5% of the surface was treated, 13% and 8% respectively for FPR and VR were obtained. In addition, the reduction of the runoff coefficient (Rc) between the different configuration was analyzed. The study critically evaluates hydraulic performances of the different techniques and shows how pitting practices cannot guarantee high performance in case of extreme precipitations. These results will enrich the knowledge of the hydraulic behavior of RWHT; aspect marginally investigated in the scientific literature. Moreover, this study presents the first scientific application of HEC-RAS as a rainfall-runoff model. Despite some limitations, this model has the effective feature of using very high-resolution topography as input for hydraulic simulations. The results presented in this study should encourage stakeholders to upscale the use of RWHT in order to lessen the flood hazard and land degradation that oppresses arid and semi-arid areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tamagnone2020124880 Serial 240  
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S. url  openurl
  Title (up) Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
  Year 2020 Publication Environmental Advances Abbreviated Journal  
  Volume 2 Issue Pages 100020  
  Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium  
  Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-7657 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title (up) Semi-analytical solutions of discharge variation of a qanat in an unconfined aquifer subjected to general areal recharge and nearby pumping well discharge Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 584 Issue Pages 124691  
  Keywords Analytical solution, Laplace domain, Screen segmentation, Qanat, Areal recharge, Constant head  
  Abstract Qanat is a type of drain that extract water from aquifers by gravity. Significant amount of fresh water used in Middle East and other parts of the world are supplied by qanats. Despite their importance, discharge variation of these type of wells received almost no attention. The aim of this research is to obtain a Laplace domain solution of discharge variation of a qanat installed in an anisotropic unconfined aquifer subjected to arbitrary areal recharge and nearby pumping well(s) discharge. A new semi-analytical solution of drawdown is obtained first to implement the effects of arbitrary areal recharge and nearby pumping well(s) using the principle of superposition. Then, the discharge variation solution of the qanat is obtained from the drawdown solution. To establish a constant-head boundary condition at the qanat periphery, the qanat is discretized into several segments. The results of this study are presented in dimensionless discharge-dimensionless time curves. The effects of hydraulic as well as geometric parameters on the discharge variation of the qanat due to arbitrary areal recharge, falling of water table from its initial position and discharge of nearby wells are explored. We also investigate the influences of distance and screen depth and location of the nearby well on the discharge variation of the qanat. The results of this study can be utilized for multiple purposes: 1) to predict discharge of qanat in response to rainfall and nearby pumping well(s); 2) to estimate the aquifer parameters using hydrograph of the qanat; 3) to determine optimal location and pumping pattern of the nearby wells to minimize their influences on the discharge of the qanat; 4) to calculate water budget of aquifers drained by a qanat. The equation presented in this work can also be used to estimate discharge of a horizontal drain installed in cropland subjected to arbitrary irrigation pattern.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2020124691 Serial 261  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: