toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T. url  openurl
  Title Sustainability and virtual water: The lessons of history Type Journal Article
  Year 2022 Publication Geography and Sustainability Abbreviated Journal  
  Volume 3 Issue 4 Pages 358-365  
  Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy  
  Abstract (up) This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-6839 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272  
Permanent link to this record
 

 
Author Rooyen, J.D. van; Watson, A.W.; Miller, J.A. url  openurl
  Title Using tritium and radiocarbon activities to constrain regional modern and fossil groundwater mixing in Southern Africa Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 614 Issue Pages 128570  
  Keywords Radiocarbon, Residence time, SADC, Tritium  
  Abstract (up) This study combines historical records of 14C and 3H in the atmosphere and soil with renewal rate and groundwater lumped parameter models to predict the abundance of 14C and 3H in groundwater over time. 624 groundwater samples from numerous studies, over four decades (1978–2019), in South Africa, Namibia, Botswana and Mozambique were collated to compare with predicted groundwater activities of 14C and 3H within the South African Development Community (SADC) region. Spatial datasets of carbonate bearing lithology, C3/C4 vegetation, summer/winter rainfall and coastal proximity were used to apply corrections to 14C and 3H data. Corrected values of 14C and 3H were compared with the theoretical abundance of these tracers, derived from the lumped parameter models, to estimate the general mean residence times and presence of groundwater mixing between modern recharge and older groundwaters. This study found that corrected values produced varying mean residence times derived from 14C ages (∼500–28500 years) and a wide range of potentially mixed waters within each aquifer system (0–100 % of tested wells) across the study area. The largest proportions of mixed groundwater, as well as the youngest mean residence times, were found in alluvial and primary fractured rock aquifers (e.g., western coast of South Africa and southern Mozambique). The smallest proportions of mixed groundwater were predicted in deep confined clay-rich aquifers as well as layered coal bearing carbonate sequences (e.g., Orapa, Malwewe and Serowe, Botswana). Insights into the proportions of mixed groundwater and mean residence times can help assess hydrological resilience on a regional scale. Such information is pertinent in promoting socio-economic development and increased water/food security in the SADC region. By understanding the resilience of groundwater resources, robust and informed strategies for water equality and GDP growth in the SADC region can be envisioned and implemented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rooyen_using_2022 Serial 94  
Permanent link to this record
 

 
Author Kazemi, A.; Esmaeilbeigi, M.; Sahebi, Z.; Ansari, A. url  openurl
  Title Health risk assessment of total chromium in the qanat as historical drinking water supplying system Type Journal Article
  Year 2022 Publication Science of The Total Environment Abbreviated Journal  
  Volume 807 Issue Pages 150795  
  Keywords Qanat, Total chromium, Hazard quotient, Non-carcinogenic risk, Risk assessment, Eastern Iran  
  Abstract (up) This study investigated the health risk assessment of total chromium (CrT) in qanats of South Khorasan, Eastern Iran. For this, concentration of CrT in a total of 83 qanats were measured in summer 2020. Samples were initially tested in the field for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). In the lab, collected samples were filtered and fixed with nitric acid (HNO3) for the detection of CrT using inductively coupled plasma mass spectrometry (ICP-MS). Hazard quotient (HQ) and carcinogenic risk assessments were considered to evaluate the risks of CrT to inhabitants. Results showed that concentration of CrT ranged from 1.79 to 1017.05 μg L-1, and a total of 25 stations illuminated CrT concentrations above the WHO standards (50 μg L-1). HQ demonstrated HQ < 1 for 90.37% of studied samples with negligible hazard, whereas 9.63% of stations illuminated HQ ≥ 1 meaning the presence of non-carcinogenic risk for water consumers. Carcinogenic risk (CR) exhibited CR > 1.00E-04 in 81.93% of qanats while 18.07% of stations had 1.00E-06 < CR < 1.00E-04 meaning no acceptable and acceptable CR for the studied qanats, respectively. Zoning map displayed that qanats in the south of South Khorasan possessed the highest HQ, but north regions showed the lowest ones. Together, CrT in qanats of South Khorasan is above the WHO limit, which results in a high risk of carcinogenicity for residents, and in turn, more efforts should be made to provide hygienic groundwater for consumers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kazemi2022150795 Serial 269  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal  
  Volume 428 Issue Pages 131180  
  Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract (up) Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
 

 
Author Grozeva, N.G.; Radwan, J.; Beaucaire, C.; Descostes, M. url  openurl
  Title Reactive transport modeling of U and Ra mobility in roll-front uranium deposits: Parameters influencing 226Ra/238U disequilibria Type Journal Article
  Year 2022 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 236 Issue Pages 106961  
  Keywords Ra/U, Radioactive disequilibria, Radium, Reactive transport modeling, Roll-front uranium deposit  
  Abstract (up) Uranium reserve estimates in ore deposits can be significantly impacted by 226Ra/238U disequilibria arising from the differential mobility of uranium and radium during groundwater transport. 1D reactive transport models were developed to investigate the long-term effects of retention processes (UO2(am) precipitation, U(VI) and Ra sorption on smectite, Ra co-precipitation with barite) on the repartitioning of 238U and 226Ra during formation of roll-front type deposits. Analytical solutions to radioactive decay chains were used in complement to examine the influence of geochemical parameters, including fluid 234U/238U activity ratios and α-recoil loss, on 226Ra/238U disequilibria in uranium ores. Model results demonstrate that smectite and barite can produce 226Ra/238U ratios \textgreater1 at low uranium contents and may explain 226Ra/238U disequilibria occurring in altered rock up- and downstream of roll-front deposits. The capacity of these phases to take up Ra and generate 226Ra/238U disequilibria depends on both mineral contents and groundwater compositions, and is thus expected to be site-specific. Simulations of ore deposits that advance downstream with time demonstrate the formation of stronger 226Ra/238U disequilibria, as expected, in the downgradient side or nose of the ore, reflecting both younger mineralization ages and the presence of active uranium precipitation. Whether disequilibria are positive or negative with respect to secular equilibrium, however, depends on the 234U/238U activity ratio in the fluid from which uranium minerals precipitate. Smaller hydraulic conductivities are shown to generate a narrower range in 226Ra/238U activity ratios with distance, and may explain the occurrence of disequilibria in the limb ore that are less pronounced than those in the nose. Furthermore, the ability of α-recoil loss to decrease 226Ra/238U activity ratios at secular equilibrium may account for negative disequilibria in high grade ores. The South Tortkuduk uranium deposits (Kazakhstan) are subsequently used as a case study to identify the processes and parameters that may contribute to 226Ra/238U disequilibria at this site. Variations in multiple parameters, including clay contents, barite contents, and mineralization ages, are found to reproduce measured 226Ra/238U activity ratios in the roll-front ore. Prioritization of these parameters will necessitate field measurements targeting both groundwater fluids and the host rock. Results from this study will ultimately aid geologists in building appropriate hydrogeochemical data sets to more efficiently locate and exploit uranium ore deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ grozeva_reactive_2022 Serial 180  
Permanent link to this record
 

 
Author Sardo, M.S.; Jalalkamali, N. url  openurl
  Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
  Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 17 Issue Pages 100754  
  Keywords System dynamics, Water resources management, Vensim, Management scenarios  
  Abstract (up) With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: