toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Emparanza, A.R.; Kampmann, R.; Caso, F.D.; Morales, C.; Nanni, A. url  openurl
  Title Durability assessment of GFRP rebars in marine environments Type Journal Article
  Year 2022 Publication Construction and Building Materials Abbreviated Journal  
  Volume 329 Issue Pages (down) 127028  
  Keywords Composite FRP rebar, Durability, Service life, Marine structures, Reinforced concrete  
  Abstract Technologies developed over the last two decades have facilitated the use of glass fiber reinforced polymer (GFRP) bars as internal reinforcement for concrete structures, specially in coastal environments, mainly due to their corrosion resistance. To-date, most durability studies have focused on a single mechanical parameter (tensile strength) and a single aging environment (exposure to high alkalinity). However, knowledge gaps exists in understanding how other mechanical parameters and relevant conditioning environments may affect the durability of GFRP bars. To this end, this study assesses the durability for different physio-mechanical properties of GFRP rebars, post exposure to accelerated conditioning in seawater. Six different GFRP rebar types were submerged in seawater tanks, at various temperatures (23°C, 40°C and 60°C) for different time periods (60, 120, 210 and 365 days). In total six different physio-mechanical properties were assessed, including: tensile strength, E-modulus, transverse and horizontal shear strength, micro-structural composition and lastly, bond strength. It was inferred that rebars with high moisture absorption resulted in poor durability, in that it affected mainly the tensile strength. Based on the Arrhenius model, at 23°C all the rebars that met the acceptance criteria by ASTM D7957 are expected to retain 85% of the tensile strength capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ruizemparanza2022127028 Serial 83  
Permanent link to this record
 

 
Author Romeo, N.; Mabry, J.; Hillegonds, D.; Kainz, G.; Jaklitsch, M.; Matsumoto, T. url  openurl
  Title Developments of a field gas extraction device and krypton purification system for groundwater radio-krypton dating at the IAEA Type Journal Article
  Year 2022 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 189 Issue Pages (down) 110450  
  Keywords  
  Abstract The long-lived radio-krypton isotope 81Kr (t1/2 = 2.29 × 105 yr) is an ideal tracer for old groundwater age dating in the range of 105–106 years which goes beyond the reach of radio-carbon (14C) age dating. Analytical breakthrough made over the last two decades in Atom Trap Trace Analysis (ATTA) has enabled the use of this isotope with extremely low abundance (81Kr/Kr = 6 × 10−13) to be used as a practical dating tool for very old groundwater. The International Atomic Energy Agency aims to provide this new isotope tool for better groundwater resource management of Member States and developed a field sampling device to collect dissolved gas samples from groundwater and a system to separate and purify trace amounts of krypton from the gas samples for the ATTA analysis. The design, setup and performances of our sampling and purification systems are described here. Our system can produce a high purity aliquot of about 5 μL of krypton from 5 L of air sample (recovery yield of >90%). The samples made by our system were confirmed to be acceptable for the ATTA analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Romeo2022110450 Serial 214  
Permanent link to this record
 

 
Author Zhang, H.; Gao, J.; Xu, L.; Zhang, X. url  openurl
  Title Case studies of radioactivity of drilling mud for in situ leaching uranium mining in China Type Journal Article
  Year 2022 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 251-252 Issue Pages (down) 106982  
  Keywords Drilling mud, Exemption management, In situ leaching, Radioactivity  
  Abstract The drilling mud from in situ leaching uranium mining is a type of low-radioactivity waste that contains natural nuclides and other harmful substances. In order to determine whether the drilling mud can meet the requirements of radioactive exemption management standards, field investigations and data simulations were conducted in this study. Two typical uranium mines were selected for onsite investigations. Drilling mud from different layers (i.e., the upper covering layer and ore-bearing layer) and from different stages (e.g., logging stage mud, drilling expansion stage mud, and mixed mud) was sampled. For each sample, the 238U and 226Ra concentrations of the solid components and the U and 226Ra concentrations of the supernatant were analyzed. The results revealed that the highest 238U and 226Ra concentrations of the solid components were 4122 Bq/kg and 4077 Bq/kg, while the 238U and 226Ra concentrations of the mixed drilling mud were all less than 300 Bq/kg. A radioactivity estimation model was established for scenario analysis. Exemption management screening lines of waste drilling mud, which can be used to classify and treat the drilling project according to the deposit’s grade and conditions, were proposed for in situ leaching drilling projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhang_case_2022 Serial 191  
Permanent link to this record
 

 
Author Grozeva, N.G.; Radwan, J.; Beaucaire, C.; Descostes, M. url  openurl
  Title Reactive transport modeling of U and Ra mobility in roll-front uranium deposits: Parameters influencing 226Ra/238U disequilibria Type Journal Article
  Year 2022 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 236 Issue Pages (down) 106961  
  Keywords Ra/U, Radioactive disequilibria, Radium, Reactive transport modeling, Roll-front uranium deposit  
  Abstract Uranium reserve estimates in ore deposits can be significantly impacted by 226Ra/238U disequilibria arising from the differential mobility of uranium and radium during groundwater transport. 1D reactive transport models were developed to investigate the long-term effects of retention processes (UO2(am) precipitation, U(VI) and Ra sorption on smectite, Ra co-precipitation with barite) on the repartitioning of 238U and 226Ra during formation of roll-front type deposits. Analytical solutions to radioactive decay chains were used in complement to examine the influence of geochemical parameters, including fluid 234U/238U activity ratios and α-recoil loss, on 226Ra/238U disequilibria in uranium ores. Model results demonstrate that smectite and barite can produce 226Ra/238U ratios \textgreater1 at low uranium contents and may explain 226Ra/238U disequilibria occurring in altered rock up- and downstream of roll-front deposits. The capacity of these phases to take up Ra and generate 226Ra/238U disequilibria depends on both mineral contents and groundwater compositions, and is thus expected to be site-specific. Simulations of ore deposits that advance downstream with time demonstrate the formation of stronger 226Ra/238U disequilibria, as expected, in the downgradient side or nose of the ore, reflecting both younger mineralization ages and the presence of active uranium precipitation. Whether disequilibria are positive or negative with respect to secular equilibrium, however, depends on the 234U/238U activity ratio in the fluid from which uranium minerals precipitate. Smaller hydraulic conductivities are shown to generate a narrower range in 226Ra/238U activity ratios with distance, and may explain the occurrence of disequilibria in the limb ore that are less pronounced than those in the nose. Furthermore, the ability of α-recoil loss to decrease 226Ra/238U activity ratios at secular equilibrium may account for negative disequilibria in high grade ores. The South Tortkuduk uranium deposits (Kazakhstan) are subsequently used as a case study to identify the processes and parameters that may contribute to 226Ra/238U disequilibria at this site. Variations in multiple parameters, including clay contents, barite contents, and mineralization ages, are found to reproduce measured 226Ra/238U activity ratios in the roll-front ore. Prioritization of these parameters will necessitate field measurements targeting both groundwater fluids and the host rock. Results from this study will ultimately aid geologists in building appropriate hydrogeochemical data sets to more efficiently locate and exploit uranium ore deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ grozeva_reactive_2022 Serial 180  
Permanent link to this record
 

 
Author Ren, Y.; Yang, X.; Hu, X.; Wei, J.; Tang, C. url  openurl
  Title Mineralogical and geochemical evidence for biogenic uranium mineralization in northern Songliao Basin, NE China Type Journal Article
  Year 2022 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 141 Issue Pages (down) 104556  
  Keywords Bacterial sulfate reduction, In-situ S isotope of pyrite, Northern Songliao basin, Sandstone-type uranium deposit, Sifangtai Formation  
  Abstract The sandstone-hosted uranium mineralization areas in the Sanzhao Sag of the northern Songliao Basin have been newly identified. The target stratum is the Upper Cretaceous Sifangtai Formation and the uranium mineralization mainly occurs in the bottom of Sifangtai Formation, corresponding to channel sand bodies in meandering river system, characterized by medium to fine-grained sandstone. This study proposes the uranium metallogenic model through petrographic observation, whole rock geochemistry, mineralogical study of uranium occurrence form (SEM), organic matter rock–eval pyrolysis analysis (REP) and in-situ sulfur isotope determination of different generations of pyrite by LA-MC-ICP-MS. Compared with the sandstones collected in barren reduction and oxidization zones, the mineralized sandstones show obvious increase in the contents of TOC, total sulfur, Y and U. Petrographic observations indicate that organic matters are mainly inherited from land plants. REP data display that the organic matter (OM) disseminated in the sandstone has very low hydrogen index (HI) from around 0 to 21 mg HC/g TOC and varied oxygen index (OI) from 44 to 115 mg CO2/g TOC, corresponding to Type Ⅳ kerogen (degraded kerogen). There are two types of coffinite with different grain size, micro-particles (μm-sized) and large aggregates (generally up to 100 μm) respectively. The coffinite micro spherules exhibit short rod-like or worm-like morphology occurring in clay matrix and cell cavities in degradofusinite or around subidiomorphic-idiomorphic pyrite. The coarse-grained coffinite contains other mineral facies (e.g. pyrite, quartz) and some of large coffinite aggregates display thrombolite-type microbial structures. The irregular pyrite relict particles in coarse-grained colloidal coffinite have light sulfur isotope compositions characterized by δ34S values from –39.96‰ to –49.89‰. The δ34S values of colloidal pyrite in replacement of OM or of the sub-idiomorphic FeS2 cement filling in the cavities of OM range from –52.77‰ to –13.88‰. Some of sub-idiomorphic pyrite cement and idiomorphic crystal have the heavier signature from – 27.06‰ to + 14.23‰. The light sulfur isotope signature suggests that the sulfur originates from bacterial sulfate reduction (BSR). The OM replacement by pyrite and the highest OI values recorded by REP in uranium mineralized samples are lines of evidence of biodegradation. Bacteria use the organic matter as food source and produce isotopically light reduced sulfur species. Oxygenated uranium-bearing waters infiltrated through the denudated windows at Daqing placanticline into the porous reduced sandstones deposited in the Sanzhao Sag. Uranium was indirectly reduced by BSR-derived iron disulfides or directly reduced by sulfate-reducing bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ren_mineralogical_2022 Serial 144  
Permanent link to this record
 

 
Author Paradis, C.J.; Hoss, K.N.; Meurer, C.E.; Hatami, J.L.; Dangelmayr, M.A.; Tigar, A.D.; Johnson, R.H. url  openurl
  Title Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater Type Journal Article
  Year 2022 Publication Journal of Contaminant Hydrology Abbreviated Journal  
  Volume 251 Issue Pages (down) 104076  
  Keywords Desorption, Dissolution, Groundwater, Surface water, Tracer, Uranium  
  Abstract The recharge of stream water below the baseflow water table can mobilize groundwater contaminants, particularly redox-sensitive and sorptive metals such as uranium. However, in-situ tracer experiments that simulate the recharge of stream water to uranium-contaminated groundwater are lacking, thus limiting the understanding of the potential mechanisms that control the mobility of uranium at the field scale. In this study, a field tracer test was conducted by injecting 100 gal (379 l) of oxic river water into a nearby suboxic and uranium-contaminated aquifer. The traced river water was monitored for 18 days in the single injection well and in the twelve surrounding observation wells. Mobilization of uranium from the solid to the aqueous phase was not observed during the tracer test despite its pre-test presence being confirmed on the aquifer sediments from lab-based acid leaching. However, strong evidence of oxidative immobilization of iron and manganese was observed during the tracer test and suggested that immobile uranium was likely in its oxidized state as U(VI) on the aquifer sediments; these observations ruled out oxidation of U(IV) to U(VI) as a potential mobilization mechanism. Therefore, desorption of U(VI) appeared to be the predominant potential mobilization mechanism, yet it was clearly not solely dependent on concentration as evident when considering that uranium-poor river water (\textless0.015 mg/L) was recharged to uranium-rich groundwater (≈1 mg/L). It was possible that uranium desorption was limited by the relatively higher pH and lower alkalinity of the river water as compared to the groundwater; both factors favor immobilization. However, it was likely that the immobile uranium was associated with a mineral phase, as opposed to a sorbed phase, thus desorption may not have been possible. The results of this field tracer study successfully ruled out two common mobilization mechanisms of uranium: (1) oxidative dissolution and (2) concentration-dependent desorption and ruled in the importance of advection, dispersion, and the mineral phase of uranium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-7722 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ paradis_elucidating_2022 Serial 135  
Permanent link to this record
 

 
Author French, K. url  openurl
  Title Indigenous knowledge, water management, and learning from our collective past Type Journal Article
  Year 2022 Publication Journal of Anthropological Archaeology Abbreviated Journal  
  Volume 68 Issue Pages (down) 101466  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-4165 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ French2022101466 Serial 253  
Permanent link to this record
 

 
Author Sardo, M.S.; Jalalkamali, N. url  openurl
  Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
  Year 2022 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 17 Issue Pages (down) 100754  
  Keywords System dynamics, Water resources management, Vensim, Management scenarios  
  Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Tan, K.; Zhang, S.; Ye, W. url  openurl
  Title Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone Type Journal Article
  Year 2022 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 54 Issue 4 Pages (down) 1175-1184  
  Keywords Fractal characteristics, In-situ leaching, Leaching kinetics, Pore structure, Uranium mine  
  Abstract The pore structure of uranium-bearing sandstone is one of the critical factors that affect the uranium leaching performance. In this article, uranium-bearing sandstone from the Yili Basin, Xinjiang, China, was taken as the research object. The fractal characteristics of the pore structure of the uranium-bearing sandstone were studied using mercury intrusion experiments and fractal theory, and the fractal dimension of the uranium-bearing sandstone was calculated. In addition, the effect of the fractal characteristics of the pore structure of the uranium-bearing sandstone on the uranium leaching kinetics was studied. Then, the kinetics was analyzed using a shrinking nuclear model, and it was determined that the rate of uranium leaching is mainly controlled by the diffusion reaction, and the dissolution rate constant (K) is linearly related to the pore specific surface fractal dimension (DS) and the pore volume fractal dimension (DV). Eventually, fractal kinetic models for predicting the in-situ leaching kinetics were established using the unreacted shrinking core model, and the linear relationship between the fractal dimension of the sample’s pore structure and the dissolution rate during the leaching was fitted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_fractal_2022 Serial 193  
Permanent link to this record
 

 
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T. url  openurl
  Title Sustainability and virtual water: The lessons of history Type Journal Article
  Year 2022 Publication Geography and Sustainability Abbreviated Journal  
  Volume 3 Issue 4 Pages (down) 358-365  
  Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy  
  Abstract This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2666-6839 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: