toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xiao, L.; Robinson, M.; O’Connor, M. url  openurl
  Title Woodland’s role in natural flood management: Evidence from catchment studies in Britain and Ireland Type Journal Article
  Year 2022 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 813 Issue Pages 151877  
  Keywords Forest harvesting, Streamflow, Natural flood management, Before-after-control-impact, Evidence-based forest impact  
  Abstract Despite the attention currently given to the potential environmental benefits of large-scale forest planting, there is a shortage of clear observational evidence regarding the effects on river flows, and what there is has often been contradictory or inconclusive. This paper presents three independently conducted paired-catchment forestry studies covering 66 station-years of flow measurements in the UK and Ireland. In each case coniferous evergreen trees were removed from one catchment with minimal soil disturbance while the adjoining control catchment was left unchanged. Trees were removed from 20% – 90% of the three experimental basins. Following woodland removal there was an increase in dry weather baseflow at all sites. Baseflows increased by about 8% after tree removal from a quarter of the Hore basin and by 41% for the near-total cut at Howan. But the changes were more complex for peak flows. Tree harvesting increased the smallest and most frequent peak storm flows, indicating that afforestation would lead to the suppression of such events. This was however restricted to events well below the mean annual flood, indicating that the impact of forests upon the largest and most damaging floods is likely to be limited. Whilst a forest cover can be effective in mitigating small and frequent stormflows it should never be assumed to provide protection against major flood events.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Xiao2022151877 Serial 241  
Permanent link to this record
 

 
Author Sahoo, P.K.; Virk, H.S.; Powell, M.A.; Kumar, R.; Pattanaik, J.K.; Salomão, G.N.; Mittal, S.; Chouhan, L.; Nandabalan, Y.K.; Tiwari, R.P. url  openurl
  Title Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes Type Journal Article
  Year 2022 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 807 Issue Pages 151753  
  Keywords Agrochemicals, Geogenic contamination, Punjab, Salinity, Shallow aquifer, Uranium enrichment  
  Abstract Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (\textless60 m) are more contaminated with U than from deeper depths (\textgreater60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3−, NO3− Cl−, and F− in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2− and CaUO2(CO3)3−, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 μg.L−1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F− (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ sahoo_meta-analysis_2022 Serial 150  
Permanent link to this record
 

 
Author Kazemi, A.; Esmaeilbeigi, M.; Sahebi, Z.; Ansari, A. url  openurl
  Title Health risk assessment of total chromium in the qanat as historical drinking water supplying system Type Journal Article
  Year 2022 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 807 Issue Pages 150795  
  Keywords Qanat, Total chromium, Hazard quotient, Non-carcinogenic risk, Risk assessment, Eastern Iran  
  Abstract This study investigated the health risk assessment of total chromium (CrT) in qanats of South Khorasan, Eastern Iran. For this, concentration of CrT in a total of 83 qanats were measured in summer 2020. Samples were initially tested in the field for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). In the lab, collected samples were filtered and fixed with nitric acid (HNO3) for the detection of CrT using inductively coupled plasma mass spectrometry (ICP-MS). Hazard quotient (HQ) and carcinogenic risk assessments were considered to evaluate the risks of CrT to inhabitants. Results showed that concentration of CrT ranged from 1.79 to 1017.05 μg L-1, and a total of 25 stations illuminated CrT concentrations above the WHO standards (50 μg L-1). HQ demonstrated HQ < 1 for 90.37% of studied samples with negligible hazard, whereas 9.63% of stations illuminated HQ ≥ 1 meaning the presence of non-carcinogenic risk for water consumers. Carcinogenic risk (CR) exhibited CR > 1.00E-04 in 81.93% of qanats while 18.07% of stations had 1.00E-06 < CR < 1.00E-04 meaning no acceptable and acceptable CR for the studied qanats, respectively. Zoning map displayed that qanats in the south of South Khorasan possessed the highest HQ, but north regions showed the lowest ones. Together, CrT in qanats of South Khorasan is above the WHO limit, which results in a high risk of carcinogenicity for residents, and in turn, more efforts should be made to provide hygienic groundwater for consumers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Kazemi2022150795 Serial 269  
Permanent link to this record
 

 
Author Wang, B.; Luo, Y.; Liu, J.-hui; Li, X.; Zheng, Z.-hong; Chen, Q.-qian; Li, L.-yao; Wu, H.; Fan, Q.-ren url  openurl
  Title Ion migration in in-situ leaching (ISL) of uranium: Field trial and reactive transport modelling Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 615 Issue Pages 128634  
  Keywords Acid in situ leaching, Banyan-Uul uranium deposit, Influence area, Reactive transport, Sensitivity analysis  
  Abstract Acid in-situ leaching (ISL) can be used as a mining technique for in situ uranium recover from underground. Acids and oxidants as lixiviants were continuously injected into a sandstone-type uranium deposit in Bayan-Uul (China). It was conducted to facilitate the dissolution of uranium minerals to generate uranyl ions, which could then be extracted for the recovery of uranium resources by the pumping cycle. A reactive transport model based on PHAST was developed to investigate the dynamic reactive migration process of uranium. The simulated results well reproduce the fluid dynamic evolution in the injecting and pumping units, as well as the dynamic release of uranium. The simulated leaching area indicates that the uranium ore leaching area was much larger than the acidification area. In addition, the pollution plume of uranium and acid water was larger than that of the leaching area, which can be used as a reference for uranium mining schemes. Furthermore, the parameter sensitivity analysis indicates the volume fraction of uranium ore and the reaction rate were the main factors affecting uranium leaching efficiency. Without considering the blockage of pores by precipitation, the Fe2+ in the reinjection fluid had a significant negative influence on uranium leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_ion_2022 Serial 195  
Permanent link to this record
 

 
Author Rooyen, J.D. van; Watson, A.W.; Miller, J.A. url  openurl
  Title Using tritium and radiocarbon activities to constrain regional modern and fossil groundwater mixing in Southern Africa Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 614 Issue Pages 128570  
  Keywords Radiocarbon, Residence time, SADC, Tritium  
  Abstract This study combines historical records of 14C and 3H in the atmosphere and soil with renewal rate and groundwater lumped parameter models to predict the abundance of 14C and 3H in groundwater over time. 624 groundwater samples from numerous studies, over four decades (1978–2019), in South Africa, Namibia, Botswana and Mozambique were collated to compare with predicted groundwater activities of 14C and 3H within the South African Development Community (SADC) region. Spatial datasets of carbonate bearing lithology, C3/C4 vegetation, summer/winter rainfall and coastal proximity were used to apply corrections to 14C and 3H data. Corrected values of 14C and 3H were compared with the theoretical abundance of these tracers, derived from the lumped parameter models, to estimate the general mean residence times and presence of groundwater mixing between modern recharge and older groundwaters. This study found that corrected values produced varying mean residence times derived from 14C ages (∼500–28500 years) and a wide range of potentially mixed waters within each aquifer system (0–100 % of tested wells) across the study area. The largest proportions of mixed groundwater, as well as the youngest mean residence times, were found in alluvial and primary fractured rock aquifers (e.g., western coast of South Africa and southern Mozambique). The smallest proportions of mixed groundwater were predicted in deep confined clay-rich aquifers as well as layered coal bearing carbonate sequences (e.g., Orapa, Malwewe and Serowe, Botswana). Insights into the proportions of mixed groundwater and mean residence times can help assess hydrological resilience on a regional scale. Such information is pertinent in promoting socio-economic development and increased water/food security in the SADC region. By understanding the resilience of groundwater resources, robust and informed strategies for water equality and GDP growth in the SADC region can be envisioned and implemented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rooyen_using_2022 Serial 94  
Permanent link to this record
 

 
Author Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. url  openurl
  Title Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 614 Issue Pages 128503  
  Keywords Real-time control, Rainwater harvesting systems, Stormwater control measures, Flood mitigation, Source Control, Climate change  
  Abstract Real-Time Control (RTC) technology is increasingly applied in Rainwater Harvesting (RWH) systems to optimise their performance related to water supply and flood mitigation. However, most studies to date have focussed on testing the benefits at an individual site scale, leaving the potential benefits for downstream stormwater networks largely untested. In this study, we developed a methodology to predict how at-source RTC RWH systems influence the behaviour of a stormwater network. Simulation was enabled by coupling the drainage model in SWMM with an RTC RWH model coded using the R software. We modelled two different RTC strategies across a range of system settings (e.g. storage size for RWH and proportion of storage to which RTC is applied) under two different climate scenarios—current and future climates. The simulations showed that RTC reduced flooding volume and peak flow of the stormwater network, leading to a potential mitigation of urban flooding risks, while also providing a decentralised supplementary water supply. Implementing RTC in more of RWH storages yielded greater benefits than simply increasing storage capacity, in both current and future climates. More importantly, the RTC systems are capable of more precisely managing the resultant flow regime in reducing the erosion and restoring the pre-development conditions in sensitive receiving waters. Our study suggests that RTC RWH storages distributed throughout a catchment can substantially improve the performance of existing drainage systems, potentially avoiding or deferring expensive network upgrades. Investments in real-time control technology would appear to be more promising than investments in detention volume alone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Xu2022128503 Serial 233  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title On the discharge variation of a qanat in an alluvial fan aquifer Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 610 Issue Pages 127922  
  Keywords Analytical solution, Wedge-shaped aquifer, Image well, Areal recharge  
  Abstract Qanat is a passive (unpumped) horizontal well (or a slant well with a very mild inclined angle) that is capable of extracting water from aquifers by gravity. Many qanats are constructed along the radius of the alluvial fan wedge-shaped aquifers. Analytical modeling of such a qanat-aquifer system provides great benefit for quickly screening different designs of qanats and accessing the performance of qanat discharge in the field. The previous analytical modeling of discharge of qanats, however, did not consider the wedge-shaped aquifers. Thus, the goal of this research is to obtain semi-analytical solutions of discharge variations of qanats in alluvial fan aquifers with nearby pumping wells, subjected to areal recharges due to rainfall. The uniform head boundary is considered inside the qanat (because of its enormous permeability in respect to the background aquifer). The influences of the aquifer lateral boundaries on discharge of qanat and its sensitivity to hydraulic and geometric parameters are explored. The influences of the lateral boundaries on the discharge of qanat due to areal recharge and nearby pumping wells discharge are also explored. The results of this study can be utilized for multiple purposes: 1) to predict the discharge of qanat in an alluvial fan aquifer and explore the influences of the areal recharge and nearby pumping well discharge; 2) to estimate the hydraulic parameters of the alluvial fan aquifer depleted by a qanat; 3) to determine the location of the nearby pumping well to minimize its influences on the discharge of a qanat; 4) to calculate the water budgets of aquifers depleted by qanats and pumping wells and replenished by areal recharge among other applications. This paper is an extension to the work presented by Sedghi and Zhan (2020) (which concerns an infinite unconfined aquifer) for an unconfined alluvial fan aquifer setting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2022127922 Serial 267  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal  
  Volume (down) 428 Issue Pages 131180  
  Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
 

 
Author Emparanza, A.R.; Kampmann, R.; Caso, F.D.; Morales, C.; Nanni, A. url  openurl
  Title Durability assessment of GFRP rebars in marine environments Type Journal Article
  Year 2022 Publication Construction and Building Materials Abbreviated Journal  
  Volume (down) 329 Issue Pages 127028  
  Keywords Composite FRP rebar, Durability, Service life, Marine structures, Reinforced concrete  
  Abstract Technologies developed over the last two decades have facilitated the use of glass fiber reinforced polymer (GFRP) bars as internal reinforcement for concrete structures, specially in coastal environments, mainly due to their corrosion resistance. To-date, most durability studies have focused on a single mechanical parameter (tensile strength) and a single aging environment (exposure to high alkalinity). However, knowledge gaps exists in understanding how other mechanical parameters and relevant conditioning environments may affect the durability of GFRP bars. To this end, this study assesses the durability for different physio-mechanical properties of GFRP rebars, post exposure to accelerated conditioning in seawater. Six different GFRP rebar types were submerged in seawater tanks, at various temperatures (23°C, 40°C and 60°C) for different time periods (60, 120, 210 and 365 days). In total six different physio-mechanical properties were assessed, including: tensile strength, E-modulus, transverse and horizontal shear strength, micro-structural composition and lastly, bond strength. It was inferred that rebars with high moisture absorption resulted in poor durability, in that it affected mainly the tensile strength. Based on the Arrhenius model, at 23°C all the rebars that met the acceptance criteria by ASTM D7957 are expected to retain 85% of the tensile strength capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0618 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ruizemparanza2022127028 Serial 83  
Permanent link to this record
 

 
Author Prusty, S.; Somu, P.; Sahoo, J.K.; Panda, D.; Sahoo, S.K.; Sahoo, S.K.; Lee, Y.R.; Jarin, T.; Sundar, L.S.; Rao, K.S. url  openurl
  Title Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review Type Journal Article
  Year 2022 Publication Chemosphere Abbreviated Journal  
  Volume (down) 308 Issue Pages 136278  
  Keywords Adsorbents, Adsorption, Techniques, Uranium, Wastewater  
  Abstract Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ prusty_adsorptive_2022 Serial 131  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: