toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. url  openurl
  Title Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa Type Journal Article
  Year 2023 Publication Systems and Soft Computing Abbreviated Journal  
  Volume 5 Issue Pages 200049  
  Keywords Artificial intelligence, Forecasting model, Groundwater levels, Machine learning, Neural networks, Rainfall, Regression, Temperature, Time series  
  Abstract The crucial role which groundwater resource plays in our environment and the overall well-being of all living things can not be underestimated. Nonetheless, mismanagement of resources, over-exploitation, inadequate supply of surface water and pollution have led to severe drought and an overall drop in groundwater resources’ levels over the past decades. To address this, a groundwater flow model and several mathematical data-driven models have been developed for forecasting groundwater levels. However, there is a problem of unavailability and scarcity of the on-site input data needed by the data-driven models to forecast the groundwater level. Furthermore, as a result of the dynamics and stochastic characteristics of groundwater, there is a need for an appropriate, accurate and reliable forecasting model to solve these challenges. Over the years, the broad application of Machine Learning (ML) and Artificial Intelligence (AI) models are gaining attraction as an alternative solution for forecasting groundwater levels. Against this background, this article provides an overview of forecasting methods for predicting groundwater levels. Also, this article uses ML models such as Regressions Models, Deep Auto-Regressive models, and Nonlinear Autoregressive Neural Networks with External Input (NARX) to forecast groundwater levels using the groundwater region 10 at Karst belt in South Africa as a case study. This was done using Python Mx. Version 1.9.1., and MATLAB R2022a machine learning toolboxes. Moreover, the Coefficient of Determination (R2);, Root Mean Square Error (RMSE), Mutual Information gain, Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Mean Absolute Scaled Error (MASE)) models were the forecasting statistical performance metrics used to assess the predictive performance of these models. The results obtained showed that NARX and Support Vector Machine (SVM) have higher performance metrics and accuracy compared to other models used in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2772-9419 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Aderemi2023200049 Serial 219  
Permanent link to this record
 

 
Author Bresinsky, L.; Kordilla, J.; Hector, T.; Engelhardt, I.; Livshitz, Y.; Sauter, M. url  openurl
  Title Managing climate change impacts on the Western Mountain Aquifer: Implications for Mediterranean karst groundwater resources Type Journal Article
  Year 2023 Publication Journal of Hydrology X Abbreviated Journal  
  Volume 20 Issue Pages 100153  
  Keywords Groundwater recharge, Storage, Hydrogeological droughts, Climate change effects, Groundwater management, Mitigation of climate change effects  
  Abstract Many studies highlight the decrease in precipitation due to climate change in the Mediterranean region, making it a prominent hotspot. This study examines the combined impacts of climate change and three groundwater demand scenarios on the water resources of the Western Mountain Aquifer (WMA) in Israel and the West Bank. While commonly used methods for quantifying groundwater recharge and water resources rely on regression models, it is important to acknowledge their limitations when assessing climate change impacts. Regression models and other data-driven approaches are effective within observed variability but may lack predictive power when extrapolated to conditions beyond historical fluctuations. A comprehensive assessment requires distributed process-based numerical models incorporating a broader range of relevant physical flow processes and, ideally, ensemble model projections. In this study, we simulate the dynamics of dual-domain infiltration and precipitation partitioning using a HydroGeoSphere (HGS) model for variably saturated water flow coupled to a soil-epikarst water balance model in the WMA. The model input includes downscaled high-resolution climate projections until 2070 based on the IPCC RCP4.5 scenario. The results reveal a 5% to 10% decrease in long-term average groundwater recharge compared to a 30% reduction in average precipitation. The heterogeneity of karstic flow and increased intensity of individual rainfall events contribute to this mitigated impact on groundwater recharge, underscoring the importance of spatiotemporally resolved climate models with daily precipitation data. However, despite the moderate decrease in recharge, the study highlights the increasing length and severity of consecutive drought years with low recharge values. It emphasizes the need to adjust current management practices to climate change, as freshwater demand is expected to rise during these periods. Additionally, the study examines the emergence of hydrogeological droughts and their propagation from the surface to the groundwater. The results suggest that the 48-month standardized precipitation index (SPI-48) is a suitable indicator for hydrogeological drought emergence due to reduced groundwater recharge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Bresinsky2023100153 Serial 223  
Permanent link to this record
 

 
Author Uddin, M.G.; Diganta, M.T.M.; Sajib, A.M.; Hasan, M.A.; Moniruzzaman, M.; Rahman, A.; Olbert, A.I. url  openurl
  Title Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19668  
  Keywords CCME index, Groundwater quality, Hydrogeochemistry, Irrigation indices, Nuclear power plant, Water quality index  
  Abstract Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3−), chloride (Cl−), phosphate (PO43−), sulfate (SO42−), nitrite (NO2−), nitrate (NO3−), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley’s ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the “poor” and “marginal” categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uddin_assessment_2023 Serial 167  
Permanent link to this record
 

 
Author Kamruzzaman, M.; Chowdhury, A. url  openurl
  Title Flash flooding considerations aside: Knowledge brokering by the extension and advisory services to adapt a farming system to flash flooding Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19662  
  Keywords Flash flooding, Knowledge brokering, Extension and advisory services, Farming system, Climate change  
  Abstract The development of agriculture sector and livelihood in Bangladesh are threatened by various climatic stressors, including flash flooding. Therefore, Extension and advisory services (EAS) need to navigate the knowledge landscape effectively to connect various farm actors and help secure the optimum benefits of knowledge and information for making rational decisions. However, little is known how EAS can perform this task to combat various effects of climate change. This study investigates the means of brokering knowledge by the EAS to help the farming sector adapt to flash flooding. The research was conducted in the north-eastern part of Bangladesh with 73 staff of the Department of Agricultural Extension (DAE), the largest public EAS in Bangladesh. The results showed that DAE primarily dealt with crop production-related information. However, EAS did not navigate knowledge and information about flash flooding, such as weather forecasting and crop-saving-embankments updates, among the farming actors. Moreover, they missed the broad utilization of internet-based-communication channels to rapidly navigate information and knowledge about possible flash flooding and its adaptation strategies. This article provides some policy implications to effectively support the adaptation of farming system to flash flooding through EAS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ KAMRUZZAMAN2023e19662 Serial 235  
Permanent link to this record
 

 
Author Petisco-Ferrero, S.; Idoeta, R.; Rozas, S.; Olondo, C.; Herranz, M. url  openurl
  Title Radiological environmental monitoring of groundwater around NPP: A proposal for its assessment Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19470  
  Keywords Detection limit, Nuclear power plant dismantling and decommissioning, Radiological environmental monitoring, Radionuclides in groundwater  
  Abstract Whether a nuclear installation has radiological impact and, in that case, its extension, are the questions behind any environmental analysis of the installation along its operational life. This analysis is based on the detailed establishment of the radiological background of the area. Accordingly, the dismantling and decommissioning process (D&D) of a nuclear power plant starts with a radiological monitoring plan, which includes the radiological characterization of the area and of its surroundings. At the completion of the D&D, unrestricted use for the site will be permitted strictly in accordance with results of the radiological survey within the limits established by the local authorities. Groundwater quality is typically included in any radiological analysis since, among other reasons, a significant part of it is highly likely to end up being extracted for domestic use and hence, human consumption. While there is no regulation containing maximum activity concentration or radionuclide guidance values for water that may be destined for uses other than public consumption, if groundwater is considered a “part” of the land, dose criteria for site release can be applied. Therefore, together with the guidance levels to be established for the different radionuclides expected in the groundwater, the detection limits to be employed when performing routine radio analytical characterization procedures in the laboratory should also be provided. In this paper, we first propose a relation of the potential radionuclides to be analyzed in groundwater, together with their detection limits to be achieved when the determinations are performed in a laboratory, and subsequently, we discuss the most suitable analytical methodologies and resources that would be necessary to undertake radiological characterization plans from a practical point of view.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ petisco-ferrero_radiological_2023 Serial 133  
Permanent link to this record
 

 
Author Pham, Q.-N.; Nguyen, T.-C.; Ta, T.-T.; Tran, T.-L. url  openurl
  Title Comprehensive approach to sustainable groundwater management in semi-arid Ninh Thuan plain, Vietnam Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 101031  
  Keywords Climate change, Groundwater, Managed aquifer recharge (MAR), Modeling, Sea level rise, Seawater intrusion, Sustainable groundwater management  
  Abstract Vietnam is a country with a long coastline and a high population density residing in the coastal plains. The largest dry area in Vietnam, the coastal plain of Ninh Thuan province, always lacks water in the first dry months of the year (Jan., Feb., Mar., and Apr.). Groundwater is an extremely valuable resource for supplies at this time. Therefore, the objective of this study is to establish a comprehensive approach to sustainable groundwater management in this semi-arid region. This approach is not only mitigating the negative impacts of factors such as climate change, sea level rise, and socio-economic development but also suggesting measures for management of aquifer recharge. A groundwater model for a 3-layer system with variable density flow SEAWAT is built to predict the impacts of climate change and sea level rise without a change in groundwater abstraction. This model helps to understand the trend of salt intrusion and lowering groundwater level in the study area. Afterwards, scenarios with different ground water abstraction and groundwater development such as ground dam, infiltration basin have been set up to meet the demands of socio-economic development in the future. Predicted results will show the impacts of the groundwater systems in the area such as groundwater level change, and saltwater intrusion. Controlled groundwater abstraction and some measures of groundwater development such as infiltration basin, underground dam would allow for an increase of up to 50000m3/day in the year 2050 without negative impacts on the aquifer system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pham_comprehensive_2023 Serial 174  
Permanent link to this record
 

 
Author Tariq, A.; Beni, L.H.; Ali, S.; Adnan, S.; Hatamleh, W.A. url  openurl
  Title An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100998  
  Keywords Flood hydrology, AHP, Flood susceptibility, FR, Unit stream power, GIS  
  Abstract Floods are one of the most common natural disasters, resulting in the extensive destruction of infrastructure, property, and human life. The destructive potential of a flood depends on numerous factors, including the size of the flood, the rate of flooding, the time it takes for the water to move through a given area, the river’s planform and cross-section geometry, and other similar factors. The present study is a unique analysis of flood mapping that was accomplished with the help of the Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and hydrogeomorphic response to floods by integrating geospatial analysis and unit stream power modeling. The Indus catchment region of Pakistan is where the subject topic is put into practice. According to the hydrologic analysis of the yearly peak discharge, the hydro-station in Gilgit-Baltistan can move boulders measuring up to 0.5 m in height during significant flooding. On the other hand, there will be no change to the geometry of the cross-section throughout 1980–2020 in Gilgit-Baltistan. The flood susceptibility map is constructed using data from twelve influencing parameters, including elevation, proximity to the drainage network, slope, drainage density, geomorphology, rainfall, the curvature of the topography, flow accumulation, geology, land use, Topographic Wetness Index (TWI), and Stream Power Index (SPI). The area under the curve (AUC) approach, which demonstrates a substantial degree of accuracy (85% and 83%), is utilized to evaluate the effectiveness of the AHP and FR. The current study fills the gaps between the geospatial approach and the hydrogeomorphic assessment of flood to determine flood susceptibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tariq2023100998 Serial 234  
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A. url  openurl
  Title Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100988  
  Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution  
  Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268  
Permanent link to this record
 

 
Author Hayes-Rich, E.; Levy, J.; Hayes-Rich, N.; Lightfoot, D.; Gauthier, Y. url  openurl
  Title Searching for hidden waters: The effectiveness of remote sensing in assessing the distribution and status of a traditional, earthen irrigation system (khettara) in Morocco Type Journal Article
  Year 2023 Publication Journal of Archaeological Science: Reports Abbreviated Journal  
  Volume 51 Issue Pages 104175  
  Keywords Remote sensing, Satellite imagery, , Morocco, Traditional irrigation, Archaeology, Water management  
  Abstract This paper presents the results of a multi-year, interdisciplinary project that aimed to assess the holistic status of the khettara system in Morocco. The khettara (also known as qanat) is a traditional, earthen water management system. Historically the system was used for settlement in regions without access to reliable surface water. It is both a world and local heritage structure, found in rural and urban regions throughout 46 countries. Recent evaluations of this traditional system have advocated for its preservation and use in arid and semi-arid regions, as modern technologies (pump wells, industrial dams, drip irrigation, etc.) have proven to be unsustainable. This project evaluates remote sensing as a tool for assessing the distribution and status of the khettara in Morocco. The results of this project demonstrate that (1) the khettara system played a large role in the historic settlement of arid and semi-arid regions, and (2) the system continues to be an important part of agriculture and life in many oases across Morocco.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-409x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hayesrich2023104175 Serial 256  
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages 101585  
  Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: