|
Christofi, C., Bruggeman, A., Külls, C., & Constantinou, C. (2020). Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach. Applied Geochemistry, 114, 104524.
|
|
|
Christofi, C., Bruggeman, A., Külls, C., & Constantinou, C. (2020). Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types. Applied Geochemistry, 123, 104780.
Abstract: The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.
|
|
|
Doulgeris, C., Tziritis, E., Pisinaras, V., Panagopoulos, A., & Külls, C. (2020). Prediction of seawater intrusion to coastal aquifers based on non-dimensional diagrams. In EGU Geophysical Abstracts (4073).
|
|
|
Jin, Z., & Külls, C. (2020). FDM based OA-ICOS for high accuracy 13C quantification in gaseous CO2. EES, 446(3), 032061.
|
|
|
Krüger, N., Külls, C., Bruggeman, A., Eliades, M., Christophi, C., Rigas, M., et al. (2020). Groundwater recharge estimates with soil isotope profiles-is there a bias on coarse-grained hillslopes? In EGU General Assembly Conference Abstracts (9840).
|
|
|
Mahindawansha, A., Külls, C., Kraft, P., & Breuer, L. (2020). Investigating unproductive water losses from irrigated agricultural crops in the humid tropics through analyses of stable isotopes of water. Hydrology and Earth System Sciences, 24(7), 3627–3642.
|
|
|
Tziritis, E., Aschonitis, V., Balacco, G., Daras, P., Doulgeris, C., Fidelibus, M. D., et al. (2020). MEDSAL Project-Salinization of critical groundwater reserves in coastal Mediterranean areas: Identification, risk assessment and sustainable management with the use of integrated modelling and smart ICT tools. In EGU General Assembly Conference Abstracts (2326).
|
|